Ananlisis Perbandingan Algoritme K-Means dan Isodata untuk Klasterisasi Data Kejadian Titik Api di Wilayah Sumatera pada Tahun 2001 hingga 2014
Main Author: | Sirat, Edo Fadila |
---|---|
Format: | Thesis NonPeerReviewed Book |
Bahasa: | eng |
Terbitan: |
, 2018
|
Subjects: | |
Online Access: |
http://repository.ub.ac.id/13855/1/Edo%20Fadila%20Sirat.pdf http://repository.ub.ac.id/13855/ |
Daftar Isi:
- Fenomena Kebakaran merupakan fenomena yang tidak asing di Indonesia. Tingginya angka kejadian kebakaran yang terjadi di Indonesia membutuhkan perhatian khusus dari pemerintah, agar setiap bencana alam seperti kebakaran hutan dapat ditanggulangi. Hasil pantauan satelit tercatat pada sebuah file data titik api dengan ukuran data yang cukup besar sehingga data sulit diolah untuk menjadi informasi yang mudah terima oleh pengguna. Berdasarkan data yang diperoleh dari situs EOSDIS tercatat sebanyak 289.256 kejadian titik api dalam rentan waktu antara 2001 hingga 2014. Dibutuhkan sebuah algoritme untuk melakukan segmentasi data atau klasterisasi data, agar data yang besar dapat diolah menjadi sebuah informasi yang baik bagi pengguna. Dalam penelitian ini dilakukan studi perbandingan algoritme klasterisasi antara K-Means dan Isodata. Kedua algoritme yang digunakan dalam penelitian ini dinilai berdasarkan kualitas klaster yang dihasilkan. Algoritme yang digunakan dalam mengukur kualitas klaster dalam penelitian ini adalah Silhouette Coefficient (SC). Hasil akhir nilai SC algoritme K-Means sebesar 0.999997187 dan algoritme Isodata sebesar 0.999957161, sehingga dalam hal ini, algoritme K-Means memiliki nilai SC yang lebih tinggi dibandingkan dengan algoritme Isodata dalam mengklaster data kejadian titik api dengan selisih nilai SC yang kecil.