ctrlnum 23638
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><relation>http://repository.unsri.ac.id/23638/</relation><title>SISTEM KLASIFIKASI KUALITAS BUAH APEL BERBASIS CITRA THERMAL MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION</title><creator>SARI, RENY PAMELA</creator><creator>Sutarno, Sutarno</creator><subject>Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.</subject><description>Apples are a type of fruit that has a sweet taste and has excellent properties so that these apples are very popular with the community. The selection of apples usually still uses a simple tool. The choice of the quality of apples at this time is always made manually so that errors often occur due to different opinions of everyone, and not all apples that look good outside have a sweet taste. Based on this problem, it can be overcome by using digital image processing using a thermal camera. Thermal retrieval using FLIR ONE Pro and smartphone. Furthermore, through image processing, namely preprocessing consists of the process of image acquisition and image quality improvement, segmentation as a process of separation between background and foreground, feature extraction is used to obtain the characteristics of apples and classification using a backpropagation algorithm for grouping data. The test results obtained in this study were 96.66% accuracy 100 %, sensitivity, and 94.44% specificity in classifying apples based on fruit quality.</description><date>2019-12-06</date><type>Thesis:Thesis</type><type>PeerReview:NonPeerReviewed</type><type>Book:Book</type><language>ind</language><rights>cc_public_domain</rights><identifier>http://repository.unsri.ac.id/23638/1/RAMA_56201_09011181520118.pdf</identifier><type>Book:Book</type><language>ind</language><rights>cc_public_domain</rights><identifier>http://repository.unsri.ac.id/23638/2/RAMA_56201_09011181520118_TURNITIN.pdf</identifier><type>Book:Book</type><language>ind</language><rights>cc_public_domain</rights><identifier>http://repository.unsri.ac.id/23638/3/RAMA_56201_09011181520118_0201117802_01_front_ref.pdf</identifier><type>Book:Book</type><language>ind</language><rights>cc_public_domain</rights><identifier>http://repository.unsri.ac.id/23638/4/RAMA_56201_09011181520118_0201117802_02.pdf</identifier><type>Book:Book</type><language>ind</language><rights>cc_public_domain</rights><identifier>http://repository.unsri.ac.id/23638/5/RAMA_56201_09011181520118_0201117802_03.pdf</identifier><type>Book:Book</type><language>ind</language><rights>cc_public_domain</rights><identifier>http://repository.unsri.ac.id/23638/6/RAMA_56201_09011181520118_0201117802_04.pdf</identifier><type>Book:Book</type><language>ind</language><rights>cc_public_domain</rights><identifier>http://repository.unsri.ac.id/23638/7/RAMA_56201_09011181520118_0201117802_05.pdf</identifier><type>Book:Book</type><language>ind</language><rights>cc_public_domain</rights><identifier>http://repository.unsri.ac.id/23638/9/RAMA_56201_09011181520118_0201117802_06_ref.pdf</identifier><type>Book:Book</type><language>ind</language><rights>cc_public_domain</rights><identifier>http://repository.unsri.ac.id/23638/10/RAMA_56201_09011181520118_0201117802_07_lamp.pdf</identifier><identifier> SARI, RENY PAMELA and Sutarno, Sutarno (2019) SISTEM KLASIFIKASI KUALITAS BUAH APEL BERBASIS CITRA THERMAL MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION. Undergraduate thesis, Sriwijaya University. </identifier><recordID>23638</recordID></dc>
language ind
format Thesis:Thesis
Thesis
PeerReview:NonPeerReviewed
PeerReview
Book:Book
Book
author SARI, RENY PAMELA
Sutarno, Sutarno
title SISTEM KLASIFIKASI KUALITAS BUAH APEL BERBASIS CITRA THERMAL MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION
publishDate 2019
isbn 0901118152011
topic Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation
url http://repository.unsri.ac.id/23638/1/RAMA_56201_09011181520118.pdf
http://repository.unsri.ac.id/23638/2/RAMA_56201_09011181520118_TURNITIN.pdf
http://repository.unsri.ac.id/23638/3/RAMA_56201_09011181520118_0201117802_01_front_ref.pdf
http://repository.unsri.ac.id/23638/4/RAMA_56201_09011181520118_0201117802_02.pdf
http://repository.unsri.ac.id/23638/5/RAMA_56201_09011181520118_0201117802_03.pdf
http://repository.unsri.ac.id/23638/6/RAMA_56201_09011181520118_0201117802_04.pdf
http://repository.unsri.ac.id/23638/7/RAMA_56201_09011181520118_0201117802_05.pdf
http://repository.unsri.ac.id/23638/9/RAMA_56201_09011181520118_0201117802_06_ref.pdf
http://repository.unsri.ac.id/23638/10/RAMA_56201_09011181520118_0201117802_07_lamp.pdf
http://repository.unsri.ac.id/23638/
contents Apples are a type of fruit that has a sweet taste and has excellent properties so that these apples are very popular with the community. The selection of apples usually still uses a simple tool. The choice of the quality of apples at this time is always made manually so that errors often occur due to different opinions of everyone, and not all apples that look good outside have a sweet taste. Based on this problem, it can be overcome by using digital image processing using a thermal camera. Thermal retrieval using FLIR ONE Pro and smartphone. Furthermore, through image processing, namely preprocessing consists of the process of image acquisition and image quality improvement, segmentation as a process of separation between background and foreground, feature extraction is used to obtain the characteristics of apples and classification using a backpropagation algorithm for grouping data. The test results obtained in this study were 96.66% accuracy 100 %, sensitivity, and 94.44% specificity in classifying apples based on fruit quality.
id IOS8119.23638
institution Universitas Sriwijaya
institution_id 177
institution_type library:university
library
library UPT Perpustakaan Universitas Sriwijaya
library_id 1098
collection Sriwijaya University Institutional Repository
repository_id 8119
city OGAN ILIR
province SUMATERA SELATAN
shared_to_ipusnas_str 1
repoId IOS8119
first_indexed 2020-03-23T08:01:15Z
last_indexed 2020-03-23T08:01:15Z
recordtype dc
_version_ 1684010473058467840
score 17.538404