Numerical implementation of harmonic polylogarithms to weight w = 8

Main Author: Ballantyne, John
Other Authors: Ablinger, J., Blümlein, J., Round, M., Schneider, C.
Format: Dataset
Terbitan: Mendeley , 2019
Subjects:
Online Access: https:/data.mendeley.com/datasets/vnc3fc79cr
ctrlnum 0.17632-vnc3fc79cr.1
fullrecord <?xml version="1.0"?> <dc><creator>Ballantyne, John</creator><title>Numerical implementation of harmonic polylogarithms to weight w = 8</title><publisher>Mendeley</publisher><description>We present the FORTRAN-code HPOLY.f for the numerical calculation of harmonic polylogarithms up to w = 8 at an absolute accuracy of ~10^{-15} or better. Using algebraic and argument relations the numerical representation can be limited to the range x in [0, sqrt(2)-1]. We provide replacement files to map all harmonic polylogarithms to a basis and the usual range of arguments to x in ]-infty, +infty [ the above interval analytically. We also briefly comment on a numerical implementation of real valued cyclotomic harmonic polylogarithms.</description><subject>Computational Physics</subject><contributor>Ablinger, J.</contributor><contributor>Bl&#xFC;mlein, J.</contributor><contributor>Round, M.</contributor><contributor>Schneider, C.</contributor><type>Other:Dataset</type><identifier>10.17632/vnc3fc79cr.1</identifier><rights>Attribution-NonCommercial 3.0 Unported</rights><rights>https://creativecommons.org/licenses/by-nc/3.0</rights><relation>https:/data.mendeley.com/datasets/vnc3fc79cr</relation><date>2019-05-03T08:23:00Z</date><recordID>0.17632-vnc3fc79cr.1</recordID></dc>
format Other:Dataset
Other
author Ballantyne, John
author2 Ablinger, J.
Blümlein, J.
Round, M.
Schneider, C.
title Numerical implementation of harmonic polylogarithms to weight w = 8
publisher Mendeley
publishDate 2019
topic Computational Physics
url https:/data.mendeley.com/datasets/vnc3fc79cr
contents We present the FORTRAN-code HPOLY.f for the numerical calculation of harmonic polylogarithms up to w = 8 at an absolute accuracy of ~10^{-15} or better. Using algebraic and argument relations the numerical representation can be limited to the range x in [0, sqrt(2)-1]. We provide replacement files to map all harmonic polylogarithms to a basis and the usual range of arguments to x in ]-infty, +infty [ the above interval analytically. We also briefly comment on a numerical implementation of real valued cyclotomic harmonic polylogarithms.
id IOS7969.0.17632-vnc3fc79cr.1
institution Universitas Islam Indragiri
affiliation onesearch.perpusnas.go.id
institution_id 804
institution_type library:university
library
library Teknologi Pangan UNISI
library_id 2816
collection Artikel mulono
repository_id 7969
city INDRAGIRI HILIR
province RIAU
shared_to_ipusnas_str 1
repoId IOS7969
first_indexed 2020-04-08T08:19:26Z
last_indexed 2020-04-08T08:19:26Z
recordtype dc
_version_ 1686587543887282176
score 17.538404