Numerical implementation of harmonic polylogarithms to weight w = 8
Main Author: | Ballantyne, John |
---|---|
Other Authors: | Ablinger, J., Blümlein, J., Round, M., Schneider, C. |
Format: | Dataset |
Terbitan: |
Mendeley
, 2019
|
Subjects: | |
Online Access: |
https:/data.mendeley.com/datasets/vnc3fc79cr |
ctrlnum |
0.17632-vnc3fc79cr.1 |
---|---|
fullrecord |
<?xml version="1.0"?>
<dc><creator>Ballantyne, John</creator><title>Numerical implementation of harmonic polylogarithms to weight w = 8</title><publisher>Mendeley</publisher><description>We present the FORTRAN-code HPOLY.f for the numerical calculation of harmonic polylogarithms up to w = 8 at an absolute accuracy of ~10^{-15} or better. Using algebraic and argument relations the numerical representation can be limited to the range x in [0, sqrt(2)-1]. We provide replacement files to map all harmonic polylogarithms to a basis and the usual range of arguments to x in ]-infty, +infty [ the above interval analytically. We also briefly comment on a numerical implementation of real valued cyclotomic harmonic polylogarithms.</description><subject>Computational Physics</subject><contributor>Ablinger, J.</contributor><contributor>Blümlein, J.</contributor><contributor>Round, M.</contributor><contributor>Schneider, C.</contributor><type>Other:Dataset</type><identifier>10.17632/vnc3fc79cr.1</identifier><rights>Attribution-NonCommercial 3.0 Unported</rights><rights>https://creativecommons.org/licenses/by-nc/3.0</rights><relation>https:/data.mendeley.com/datasets/vnc3fc79cr</relation><date>2019-05-03T08:23:00Z</date><recordID>0.17632-vnc3fc79cr.1</recordID></dc>
|
format |
Other:Dataset Other |
author |
Ballantyne, John |
author2 |
Ablinger, J. Blümlein, J. Round, M. Schneider, C. |
title |
Numerical implementation of harmonic polylogarithms to weight w = 8 |
publisher |
Mendeley |
publishDate |
2019 |
topic |
Computational Physics |
url |
https:/data.mendeley.com/datasets/vnc3fc79cr |
contents |
We present the FORTRAN-code HPOLY.f for the numerical calculation of harmonic polylogarithms up to w = 8 at an absolute accuracy of ~10^{-15} or better. Using algebraic and argument relations the numerical representation can be limited to the range x in [0, sqrt(2)-1]. We provide replacement files to map all harmonic polylogarithms to a basis and the usual range of arguments to x in ]-infty, +infty [ the above interval analytically. We also briefly comment on a numerical implementation of real valued cyclotomic harmonic polylogarithms. |
id |
IOS7969.0.17632-vnc3fc79cr.1 |
institution |
Universitas Islam Indragiri |
affiliation |
onesearch.perpusnas.go.id |
institution_id |
804 |
institution_type |
library:university library |
library |
Teknologi Pangan UNISI |
library_id |
2816 |
collection |
Artikel mulono |
repository_id |
7969 |
city |
INDRAGIRI HILIR |
province |
RIAU |
shared_to_ipusnas_str |
1 |
repoId |
IOS7969 |
first_indexed |
2020-04-08T08:19:26Z |
last_indexed |
2020-04-08T08:19:26Z |
recordtype |
dc |
_version_ |
1686587543887282176 |
score |
17.538404 |