Exploring Phononic Properties of Two-Dimensional Materials using Machine Learning Interatomic Potentials

Main Author: Mortazavi, Bohayra
Other Authors: Novikov, Ivan , Shapeev, Alexander
Format: Dataset
Terbitan: Mendeley , 2020
Subjects:
Online Access: https:/data.mendeley.com/datasets/7ppcf7cs27
ctrlnum 0.17632-7ppcf7cs27.1
fullrecord <?xml version="1.0"?> <dc><creator>Mortazavi, Bohayra</creator><title>Exploring Phononic Properties of Two-Dimensional Materials using Machine Learning Interatomic Potentials </title><publisher>Mendeley</publisher><description>In this manual we provide a guide on the practical implementation and reproduction of the results presented in our publication entitled: "Exploring Phononic Properties of Two-Dimensional Materials using Machine Learning Interatomic Potentials". We specifically discuss the repository https://gitlab.com/ivannovikov/mlip_phonopy with the MLIP_PHONOPY code&#x2014;a C++ interface between the MLIP code and the PHONOPY software&#x2014;which allows one to calculate phonon spectra, group velocities, thermal properties, etc., of a two-dimensional material. Along with the repository description, this manual contains an instruction on quick installation of the stable branch of the MLIP code, a description of VASP input files for ab initio molecular dynamics (AIMD) calculations (namely, the folders Structures and VASP-inputs) and training set preparation, an instruction on passive training of MomentTensor Potentials (MTPs) using the MLIP code. Finaly, we describe the folders Untrained-MTPs and Exampleswith the additional files available here: http://dx.doi.org/10.17632/7ppcf7cs27.1.</description><subject>Physics</subject><subject>Machine Learning Algorithm</subject><subject>Molecular Dynamics</subject><subject>Phonon Density of State</subject><contributor>Novikov, Ivan </contributor><contributor>Shapeev, Alexander</contributor><type>Other:Dataset</type><identifier>10.17632/7ppcf7cs27.1</identifier><rights>Creative Commons Attribution 4.0 International</rights><rights>http://creativecommons.org/licenses/by/4.0</rights><relation>https:/data.mendeley.com/datasets/7ppcf7cs27</relation><date>2020-01-27T14:32:24Z</date><recordID>0.17632-7ppcf7cs27.1</recordID></dc>
format Other:Dataset
Other
author Mortazavi, Bohayra
author2 Novikov, Ivan
Shapeev, Alexander
title Exploring Phononic Properties of Two-Dimensional Materials using Machine Learning Interatomic Potentials
publisher Mendeley
publishDate 2020
topic Physics
Machine Learning Algorithm
Molecular Dynamics
Phonon Density of State
url https:/data.mendeley.com/datasets/7ppcf7cs27
contents In this manual we provide a guide on the practical implementation and reproduction of the results presented in our publication entitled: "Exploring Phononic Properties of Two-Dimensional Materials using Machine Learning Interatomic Potentials". We specifically discuss the repository https://gitlab.com/ivannovikov/mlip_phonopy with the MLIP_PHONOPY code—a C++ interface between the MLIP code and the PHONOPY software—which allows one to calculate phonon spectra, group velocities, thermal properties, etc., of a two-dimensional material. Along with the repository description, this manual contains an instruction on quick installation of the stable branch of the MLIP code, a description of VASP input files for ab initio molecular dynamics (AIMD) calculations (namely, the folders Structures and VASP-inputs) and training set preparation, an instruction on passive training of MomentTensor Potentials (MTPs) using the MLIP code. Finaly, we describe the folders Untrained-MTPs and Exampleswith the additional files available here: http://dx.doi.org/10.17632/7ppcf7cs27.1.
id IOS7969.0.17632-7ppcf7cs27.1
institution Universitas Islam Indragiri
affiliation onesearch.perpusnas.go.id
institution_id 804
institution_type library:university
library
library Teknologi Pangan UNISI
library_id 2816
collection Artikel mulono
repository_id 7969
city INDRAGIRI HILIR
province RIAU
shared_to_ipusnas_str 1
repoId IOS7969
first_indexed 2020-04-08T08:19:39Z
last_indexed 2020-04-08T08:19:39Z
recordtype dc
_version_ 1686587544929566720
score 17.538404