One-pot Selective Conversion of Biomass-derived Furfural into Cyclopentanone/Cyclopentanol over TiO2 Supported Bimetallic Ni-M (M = Co, Fe) Catalysts
Main Authors: | Astuti, Maria Dewi, Kristina, Ditya, Rodiansono, Rodiansono, Mujiyanti, Dwi Rasy |
---|---|
Other Authors: | Penelitian Berbasis Kompetensi (PBK) FY 2017-2018 under grant number of DIPA-042.06-1.401516/2018 and DIPA-042.06-1.401516/2019, Ministry of Research, Technology, and Higher Education, Indonesian Government |
Format: | Article info application/pdf Journal |
Bahasa: | eng |
Terbitan: |
Department of Chemical Engineering - Diponegoro University
, 2020
|
Subjects: | |
Online Access: |
https://ejournal2.undip.ac.id/index.php/bcrec/article/view/6307 https://ejournal2.undip.ac.id/index.php/bcrec/article/view/6307/3652 https://ejournal2.undip.ac.id/index.php/bcrec/article/downloadSuppFile/6307/1446 https://ejournal2.undip.ac.id/index.php/bcrec/article/downloadSuppFile/6307/1448 https://ejournal2.undip.ac.id/index.php/bcrec/article/downloadSuppFile/6307/1451 |
Daftar Isi:
- One-pot selective conversion of biomass-derived furfural (FFald) into cyclopentanone (CPO) or cyclopentanol (CPL) using bimetallic nickel-based supported on TiO2 (denoted as Ni-M(3.0)/TiO2; M = Co and Fe; 3.0 is Ni/M molar ratio) have been investigated. Catalysts were synthesized via a hydrothermal method at 150 °C for 24 h, followed by H2 reduction at 450 °C for 1.5 h. X-ray Diffraction (XRD) analysis showed that the formation of Ni-Co alloy phase at 2θ = 44.2° for Ni-Co(3.0)/TiO2 and Ni-Fe alloy at 2θ = 44.1° for Ni-Fe(3.0)/TiO2. The amount of acid sites was measured by using ammonia-temperature programmed desorption (NH3-TPD). Ni-Co(3.0)/TiO2 has three NH3 desorption peaks at 180 °C, 353 °C, and 569 °C with acid site amounts of 1.30 μmol.g-1, 1.0 μmol.g-1, and 2.0 μmol.g-1, respectively. On the other hand, Ni-Fe(3.0)/TiO2 consisted of NH3 desorption peaks at 214 °C and 626 °C with acid site amounts of 3.3 μmol.g-1and 2.0 μmol.g-1, respectively. Both Ni-Co(3.0)/TiO2 and Ni-Fe(3.0)/TiO2 catalysts were found to be active for the selective hydrogenation of FFald to furfuryl alcohol (FFalc) at low temperature of 110 °C, H2 3.0 MPa, 3 h with FFalc selectivity of 81.1% and 82.9%, respectively. High yields of CPO (27.2%) and CPL (41.0%) were achieved upon Ni-Fe(3.0)/TiO2 when the reaction temperature was increased to 170 °C, 3.0 MPa of H2, and a reaction time of 6 h. The yield of CPO+CPL on the reused catalyst decreased slightly after the second reaction run, but the activity was maintained for at least three consecutive runs. Copyright © 2020 BCREC Group. All rights reserved