Controlling the Balance of Exploration and Exploitation in ACO Algorithm
Main Author: | Jabbar, Ayad Mohammed |
---|---|
Format: | Article info application/pdf Journal |
Bahasa: | eng |
Terbitan: |
University of Babylon
, 2018
|
Subjects: | |
Online Access: |
https://www.journalofbabylon.com/index.php/JUBPAS/article/view/678 https://www.journalofbabylon.com/index.php/JUBPAS/article/view/678/490 |
Daftar Isi:
- خوارزمية النمل هي واحده من خوارزميات البحث عن الحلول المثلى ضمن فضاء واسع من الاحتمالات على نحو شبيه بطريقة النمل في البحث والتقفي لإيجاد الحلول لبعض المشاكل المعقدة التي يصعب حلها باستخدام خوارزميات الذكاء الاصطناعي التقليدية. تستخدم هذه الخوارزمية عمليه البحث في فضاء الحالات للاستنتاج حلول مختلفة اثناء عمليه البحث معتمدة على التوازن بين استكشاف حلول جديدة لتوسيع رقعة البحث وبين استغلال الحلول الجيدة لتحسين الحلول المستخرجة مسبقا. ان عمليه خلق توازن بين هاتين العمليتان يؤدي لتحسين النتائج والخروج بحلول أكثر امثليه. هدف هذا البحث هو ايجاد قانون احتمالي أكثر ملاءمة وقادر على خلق توازن أفضل بين عمليتي الاستكشاف والاستغلال. بعد اجراء ستة تجارب مختلفة من حيث أشكال البينات تم اثبات ان التحسين في هذه الخوارزمية يؤدي الى انتاج حلول عالية الجودة من ناحية قصر طول المسار المكتشف
- Ant colony optimization is a meta-heuristic algorithm inspired by the foraging behavior of real ant colony. The algorithm is a population-based solution employed in different optimization problems such as classification, image processing, clustering, and so on. This paper sheds the light on the side of improving the results of traveling salesman problem produced by the algorithm. The key success that produces the valuable results is due to the two important components of exploration and exploitation. Balancing both components is the foundation of controlling search within the ACO. This paper proposes to modify the main probabilistic method to overcome the drawbacks of the exploration problem and produces global optimal results in high dimensional space. Experiments on six variant of ant colony optimization indicate that the proposed work produces high-quality results in terms of shortest route.