A New Approach of Rough Set Theory for ‎Feature Selection and Bayes Net Classifier ‎Applied on Heart Disease Dataset

Main Authors: Al-Shamery, Eman S., Al-Obaidi, Ali A.Rahoomi
Format: Article info application/pdf Journal
Bahasa: eng
Terbitan: University of Babylon , 2017
Subjects:
Online Access: https://www.journalofbabylon.com/index.php/JUBPAS/article/view/470
https://www.journalofbabylon.com/index.php/JUBPAS/article/view/470/301
Daftar Isi:
  • درسنا في هذا البحث اختيار الصفات بالاعتماد على نهج جديد من  خوارزمية مجموعة التقريب حيث تعتمد هذه الطريقة على اختيار الصفات الأكثر تاثيرا. لجئنا الى انتقاء الصفات اختصارا للوقت , وجود الصفة تؤثر على دقة النتائج او قد تكون الصفة غير متوفرة . تم تطبيق الخوارزمية على بيانات امراض القلب لاختيار افضل الصفات المؤثرة. ان المشكلة الرئيسية هو كيفية تشخيص الإصابة فيما لو كان مصاب بمرض القلب من عدمه.هذه المشكلة تمثل تحدي لان لا نسطيع اتخاذ القرار بصورة مباشرة. تعتمد الطريقة المقترحة على ترميز البيانات الاصلية .ان الناتج من هذه الخوارزميه هي الصفات الأكثر أهمية حيث تهمل الصفات السيئة والغير ضرورية.وتم تطبيق النتائج على خوارزمية شكبة بيزينت كخوارزمية للتنبؤ بالمرض وقد حصلنا على النتائج 82.17 , 83.49 , 74.58 عند استخدام جميع الصفات ,12 , 7 طول الصفات على التوالي.وتم تطبيق نتائج خوارزمية مجموعة التقريب الاصلية على خوارزمية البيزين وحصلنا على النتائج 58.41 ,81.51  عند استخدام 2 , 12 طول الصفات على التوالي
  • In this paper a new approach of rough set features selection has been proposed. Feature selection has been used for several reasons a) decrease time of prediction b) feature possibly is not found c) present of feature case bad prediction. Rough set has been used to select most significant features. The proposed rough set has been applied on heart diseases data sets. The main problem is how to predict patient has heart disease or not depend on given features. The problem is challenge, because it cannot determine decision directly .Rough set has been modified to get attributes for prediction by ignored unnecessary and bad features. Bayes net has been used for classified method. 10-fold cross validation is used for evaluation. The Correct Classified Instances were 82.17, 83.49, and 74.58 when use full, 12, 7 length of attributes respectively. Traditional rough set has been applied, the minimum Correct Classified Instances were 58.41 and 81.51 when use 2 length of attributes respectively