Deteksi Batik Parang Menggunakan Fitur Co-Occurence Matrix Dan Geometric Moment Invariant Dengan Klasifikasi KNN

Main Author: Ginantra, Ni Luh Wiwik Sri Rahayu
Format: Article info application/pdf eJournal
Bahasa: eng
Terbitan: Research institutions and Community Service, University of Udayana , 2016
Subjects:
Online Access: http://ojs.unud.ac.id/index.php/lontar/article/view/19704
http://ojs.unud.ac.id/index.php/lontar/article/view/19704/13499
Daftar Isi:
  • Motif batik merupakan suatu dasar atau pokok suatu pola gambar yang merupakan pusat suatu rancangan gambar sehingga makna dari tanda, simbol atau lambang dibalik motif batik tersebut dapat diungkapkan. Identifikasi secara visual memerlukan skill penglihatan dan pengetahuan dalam mengklasifikasikan pola yang terbentuk dari citra batik.  Kurangnya media informasi yang dibuat  tentang motif batik menjadikan masyarakat luas kurang mendapatkan informasi tentang motif batik. Berdasarkan hal tersebut penelitian ini dilakukan guna mengimplementasikan identifikasi secara visual kedalam komputer yang dapat membantu dan memudahkan dalam mengidentifikasi jenis batik.  Pengenalan citra batik dengan menggunakan metode Co-occurrence Matrix sebagai ekstraksi ciri tekstur dan Geometric Moment Invariant dan pengklasifikasian citra batik dengan menggunakan K Nearest Neighbor.menghasilkan nilai akurasi yang diperoleh dengan metode Geometric Moment Invariant lebih baik dalam mengenali pola batik Parang yang termasuk jenis batik geometric yaitu 80% dibandingkan dengan hasil pada metode Co-occurence Matrix yaitu 70%.
  • Batik motifs are the base or the blueprint of batik patterns which serve as the core of the batik image design, and therefore the meaning of a sign, symbol or logo in a batik work can be revealed through its motifs. Visual identification requires visual skills and knowledge in classifying patterns formed in a batik image. Lack of media providing information on batik motifs makes the public unable to have sufficient information about batik motifs. Looking at this phenomenon, this study is conducted in order to perform visual identification using a computer that can assist and facilitate in identifying the types of batik. The methods used for batik image recognition are the Co-occurrence Matrix method to provide extraction of batik texture features, and the Geometric Moment Invariant method, while K Nearest Neighbor is used to classify batik images. The results on the accuracy values obtained reveal that the of 80%, compared to the accuracy value result using the Co-occurrence Matrix method that is 70%.