Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes

Main Authors: Ghifari, Achmad, Widasari, Edita Rosana
Format: Article info application/pdf eJournal
Bahasa: ind
Terbitan: Fakultas Ilmu Komputer, Universitas Brawijaya , 2023
Online Access: http://jtiik.ub.ac.id/index.php/jtiik/article/view/6913
http://jtiik.ub.ac.id/index.php/jtiik/article/view/6913/pdf
ctrlnum article-6913
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><title lang="id">Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Na&#xEF;ve Bayes</title><creator lang="id">Ghifari, Achmad</creator><creator lang="id">Widasari, Edita Rosana</creator><description lang="id">Tidur merupakan aktivitas dimana otak memberikan tubuh waktu istirahat secara total. Kualitas tidur penting untuk menjaga kondisi fisik maupun mental seseorang. Buruknya kualitas tidur disebabkan oleh gangguan tidur. Gangguan tidur yang paling umum terjadi adalah Sleep-disordered Breathing (SDB) atau Sleep Apnea, dimana penderitanya akan mengalami henti napas secara berulang saat tertidur. Sleep Apnea dikategorikan menjadi 2, yaitu Obstructive Sleep Apnea (OSA) dan Central Sleep Apnea (CSA). Diagnosis gangguan tidur dilakukan dengan Polysomnography yang cenderung mahal dan kurang nyaman. Hasil Polysomnography juga tidak dapat langsung digunakan oleh dokter untuk evaluasi lebih lanjut. Oleh karena itu, pada penelitian ini dibuat sistem pendeteksi gangguan tidur ke dalam kelas Normal, OSA, atau CSA menggunakan sinyal Electrocardiography (ECG) yang diakuisisi dengan teknik 3-lead placement. Sistem ini menggunakan sensor AD8232 dalam mengakuisisi sinyal jantung yang akan diproses oleh Arduino Mega 2560 untuk mendapatkan fitur High dan Low Frequency dari sinyal yang kemudian digunakan untuk klasifikasi. Sistem ini memiliki akurasi sebesar 85% dalam melakukan klasifikasi SDB menggunakan metode Na&#xEF;ve Bayes dengan rata-rata waktu komputasi sebesar 12ms. Sistem ini dapat digunakan di rumah karena bersifat portable dan datanya dapat langsung diunduh melalui websiteuntuk evaluasi dokter, sehingga membuat pasien merasa lebih nyaman dan efisien dalam melakukan diagnosis dini.&#xA0;Abstract&#xA0;Sleep is an activity in which the brain gives the body total rest. The quality of sleep is important to maintain someone's physical and mental condition. Poor sleep quality is caused by sleep disorders. The most common sleep disorder is Sleep-Disordered Breathing (SDB) or Sleep Apnea, in which the sufferer will experience repeated pauses in breathing while asleep. Sleep Apnea is categorized into two, namely Obstructive Sleep Apnea (OSA) and Central Sleep Apnea (CSA). Sleep disorder diagnosis is done with Polysomnography which is expensive and uncomfortable. The result of Polysomnography can also not be directly used by doctors for further evaluation. Therefore, in this research, a system was created to detect sleep disorders into Normal, OSA, or CSA classes using Electrocardiography (ECG) signals acquired by the 3-lead placement technique. This system uses AD8232 sensors to acquire heart signals that are processed by Arduino Mega 2560 to obtain High and Low-frequency features of the signal, which are then used for classification. This system has an accuracy of 85% in classifying SDB using the Naive Bayes method with an average computation time of 12ms. This system can be used at home because it is portable and the data can be directly downloaded from the website for doctor evaluation, making the patient feel more comfortable and efficient in early diagnosis.</description><publisher lang="en">Fakultas Ilmu Komputer, Universitas Brawijaya</publisher><date>2023-08-30</date><type>Journal:Article</type><type>Other:info:eu-repo/semantics/publishedVersion</type><type>File:application/pdf</type><identifier>http://jtiik.ub.ac.id/index.php/jtiik/article/view/6913</identifier><identifier>10.25126/jtiik.20241046913</identifier><source lang="id">Jurnal Teknologi Informasi dan Ilmu Komputer; Vol 10 No 4: Agustus 2023; 815-822</source><source lang="en">Jurnal Teknologi Informasi dan Ilmu Komputer; Vol 10 No 4: Agustus 2023; 815-822</source><source>2528-6579</source><source>2355-7699</source><source>10.25126/jtiik.2024104</source><language>ind</language><relation>http://jtiik.ub.ac.id/index.php/jtiik/article/view/6913/pdf</relation><rights lang="en">Hak Cipta (c) 2023 Jurnal Teknologi Informasi dan Ilmu Komputer</rights><recordID>article-6913</recordID></dc>
language ind
format Journal:Article
Journal
Other:info:eu-repo/semantics/publishedVersion
Other
File:application/pdf
File
Journal:eJournal
author Ghifari, Achmad
Widasari, Edita Rosana
title Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes
publisher Fakultas Ilmu Komputer, Universitas Brawijaya
publishDate 2023
isbn 20241046913
url http://jtiik.ub.ac.id/index.php/jtiik/article/view/6913
http://jtiik.ub.ac.id/index.php/jtiik/article/view/6913/pdf
contents Tidur merupakan aktivitas dimana otak memberikan tubuh waktu istirahat secara total. Kualitas tidur penting untuk menjaga kondisi fisik maupun mental seseorang. Buruknya kualitas tidur disebabkan oleh gangguan tidur. Gangguan tidur yang paling umum terjadi adalah Sleep-disordered Breathing (SDB) atau Sleep Apnea, dimana penderitanya akan mengalami henti napas secara berulang saat tertidur. Sleep Apnea dikategorikan menjadi 2, yaitu Obstructive Sleep Apnea (OSA) dan Central Sleep Apnea (CSA). Diagnosis gangguan tidur dilakukan dengan Polysomnography yang cenderung mahal dan kurang nyaman. Hasil Polysomnography juga tidak dapat langsung digunakan oleh dokter untuk evaluasi lebih lanjut. Oleh karena itu, pada penelitian ini dibuat sistem pendeteksi gangguan tidur ke dalam kelas Normal, OSA, atau CSA menggunakan sinyal Electrocardiography (ECG) yang diakuisisi dengan teknik 3-lead placement. Sistem ini menggunakan sensor AD8232 dalam mengakuisisi sinyal jantung yang akan diproses oleh Arduino Mega 2560 untuk mendapatkan fitur High dan Low Frequency dari sinyal yang kemudian digunakan untuk klasifikasi. Sistem ini memiliki akurasi sebesar 85% dalam melakukan klasifikasi SDB menggunakan metode Naïve Bayes dengan rata-rata waktu komputasi sebesar 12ms. Sistem ini dapat digunakan di rumah karena bersifat portable dan datanya dapat langsung diunduh melalui websiteuntuk evaluasi dokter, sehingga membuat pasien merasa lebih nyaman dan efisien dalam melakukan diagnosis dini. Abstract Sleep is an activity in which the brain gives the body total rest. The quality of sleep is important to maintain someone's physical and mental condition. Poor sleep quality is caused by sleep disorders. The most common sleep disorder is Sleep-Disordered Breathing (SDB) or Sleep Apnea, in which the sufferer will experience repeated pauses in breathing while asleep. Sleep Apnea is categorized into two, namely Obstructive Sleep Apnea (OSA) and Central Sleep Apnea (CSA). Sleep disorder diagnosis is done with Polysomnography which is expensive and uncomfortable. The result of Polysomnography can also not be directly used by doctors for further evaluation. Therefore, in this research, a system was created to detect sleep disorders into Normal, OSA, or CSA classes using Electrocardiography (ECG) signals acquired by the 3-lead placement technique. This system uses AD8232 sensors to acquire heart signals that are processed by Arduino Mega 2560 to obtain High and Low-frequency features of the signal, which are then used for classification. This system has an accuracy of 85% in classifying SDB using the Naive Bayes method with an average computation time of 12ms. This system can be used at home because it is portable and the data can be directly downloaded from the website for doctor evaluation, making the patient feel more comfortable and efficient in early diagnosis.
id IOS577.article-6913
institution Universitas Brawijaya
institution_id 30
institution_type library:university
library
library Perpustakaan Universitas Brawijaya
library_id 480
collection Jurnal Teknologi Informasi dan Ilmu Komputer
repository_id 577
subject_area Program Komputer dan Teknologi Informasi
city MALANG
province JAWA TIMUR
repoId IOS577
first_indexed 2024-06-02T20:42:53Z
last_indexed 2024-06-02T20:42:53Z
recordtype dc
_version_ 1800783733332115456
score 17.538404