Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Naïve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi)

Main Authors: Rinandyaswara, Raditya, Sari, Yuita Arum, Furqon, Muhammad Tanzil
Format: Article info application/pdf eJournal
Bahasa: ind
Terbitan: Fakultas Ilmu Komputer, Universitas Brawijaya , 2022
Online Access: http://jtiik.ub.ac.id/index.php/jtiik/article/view/4707
http://jtiik.ub.ac.id/index.php/jtiik/article/view/4707/pdf
ctrlnum article-4707
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><title lang="id">Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Na&#xEF;ve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi)</title><creator lang="id">Rinandyaswara, Raditya</creator><creator lang="id">Sari, Yuita Arum</creator><creator lang="id">Furqon, Muhammad Tanzil</creator><description lang="id">Stopword Removal merupakan bagian dari tahapan preprocessing teks yang bertujuan untuk menghapus kata yang tidak relevan didalam suatu kalimat berdasarkan daftar stopword. Daftar stopword yang biasa digunakan berbentuk digital library yang daftarnya sudah tersedia sebelumnya, namun tidak semua kata-kata yang terdapat didalam digital library merupakan kata yang tidak relevan dalam suatu data tertentu. Penelitian ini menggunakan daftar stopword yang dibentuk dengan algoritme Term Based Random Sampling. Dalam Term Based Random Sampling terdapat 3 parameter yaitu Y untuk jumlah perulangan pengambilan kata random, X untuk jumlah pengambilan bobot terendah dalam perulangan Y, dan L sebagai persentase jumlah stopword yang ingin digunakan. Sehingga penelitian ini ditujukan untuk mencari kombinasi terbaik dari 3 parameter tersebut serta membandingkan stopword Term Based Random Sampling dengan stopword Tala dan tanpa proses stopword removal dalam analisis sentimen tweet mengenai kuliah daring dengan menggunakan metode Na&#xEF;ve Bayes. Hasil evaluasi dengan stopword Term Based Random Sampling mendapatkan akurasi tertinggi dengan X, Y, L sebesar 10, 10, 40 dengan macroaverage accuracy sebesar 0,758, macroaverage precision sebesar 0,658, macroaverage recall sebesar 0,636, dan macroaverage f-measure sebesar 0,647. Berdasarkan hasil pengujian disimpulkan bahwa semakin besar X, Y, L maka semakin tinggi kemungkinannya untuk hasil evaluasi turun. Hasil pengujian membuktikan bahwa Term Based Random Sampling berhasil mendapatkan akurasi lebih tinggi dibandingkan dengan stopword Tala maupun tanpa menggunakan proses stopword removal.&#xA0;AbstractStopword Removal is part of the text preprocessing stage which aims to remove irrelevant words in a sentence based on the stopword list. The stopword list that is commonly used is in the form of a digital library whose list is already available, but not all words contained in the digital library are irrelevant words in certain data. This study uses a stopword list formed by the Term Based Random Sampling algorithm. In Term Based Random Sampling, there are 3 parameters, namely Y for the number of random word retrieval repetitions, X for the lowest number of weights in Y repetitions, and L as the percentage of the number of stopwords you want to use. So this research is aimed at finding the best combination of these 3 parameters and comparing the Term Based Random Sampling stopword with the stopword tuning and without the stopword removal process in the analysis of tweet sentiment regarding online lectures using the Na&#xEF;ve Bayes method. The results of the evaluation with the Term Based Random Sampling stopword get the highest accuracy with X, Y, L of 10, 10, 40 with a macroaverage accuracy of 0.758, a macroaverage precision of 0.658, a macroaverage recall of 0.636, and a macroaverage f-measure of 0.647. Based on the test results, it is concluded that the greater the X, Y, L, the higher the probability that the evaluation results will decrease. The test results prove that Term Based Random Sampling is successful in obtaining higher accuracy than stopword tuning or without using the stopword removal process.</description><publisher lang="en">Fakultas Ilmu Komputer, Universitas Brawijaya</publisher><date>2022-08-31</date><type>Journal:Article</type><type>Other:info:eu-repo/semantics/publishedVersion</type><type>File:application/pdf</type><identifier>http://jtiik.ub.ac.id/index.php/jtiik/article/view/4707</identifier><identifier>10.25126/jtiik.2022934707</identifier><source lang="id">Jurnal Teknologi Informasi dan Ilmu Komputer; Vol 9 No 4: Agustus 2022; 717-724</source><source lang="en">Jurnal Teknologi Informasi dan Ilmu Komputer; Vol 9 No 4: Agustus 2022; 717-724</source><source>2528-6579</source><source>2355-7699</source><source>10.25126/jtiik.202294</source><language>ind</language><relation>http://jtiik.ub.ac.id/index.php/jtiik/article/view/4707/pdf</relation><rights lang="en">Hak Cipta (c) 2022 Jurnal Teknologi Informasi dan Ilmu Komputer</rights><recordID>article-4707</recordID></dc>
language ind
format Journal:Article
Journal
Other:info:eu-repo/semantics/publishedVersion
Other
File:application/pdf
File
Journal:eJournal
author Rinandyaswara, Raditya
Sari, Yuita Arum
Furqon, Muhammad Tanzil
title Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Naïve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi)
publisher Fakultas Ilmu Komputer, Universitas Brawijaya
publishDate 2022
isbn 9782022934709
url http://jtiik.ub.ac.id/index.php/jtiik/article/view/4707
http://jtiik.ub.ac.id/index.php/jtiik/article/view/4707/pdf
contents Stopword Removal merupakan bagian dari tahapan preprocessing teks yang bertujuan untuk menghapus kata yang tidak relevan didalam suatu kalimat berdasarkan daftar stopword. Daftar stopword yang biasa digunakan berbentuk digital library yang daftarnya sudah tersedia sebelumnya, namun tidak semua kata-kata yang terdapat didalam digital library merupakan kata yang tidak relevan dalam suatu data tertentu. Penelitian ini menggunakan daftar stopword yang dibentuk dengan algoritme Term Based Random Sampling. Dalam Term Based Random Sampling terdapat 3 parameter yaitu Y untuk jumlah perulangan pengambilan kata random, X untuk jumlah pengambilan bobot terendah dalam perulangan Y, dan L sebagai persentase jumlah stopword yang ingin digunakan. Sehingga penelitian ini ditujukan untuk mencari kombinasi terbaik dari 3 parameter tersebut serta membandingkan stopword Term Based Random Sampling dengan stopword Tala dan tanpa proses stopword removal dalam analisis sentimen tweet mengenai kuliah daring dengan menggunakan metode Naïve Bayes. Hasil evaluasi dengan stopword Term Based Random Sampling mendapatkan akurasi tertinggi dengan X, Y, L sebesar 10, 10, 40 dengan macroaverage accuracy sebesar 0,758, macroaverage precision sebesar 0,658, macroaverage recall sebesar 0,636, dan macroaverage f-measure sebesar 0,647. Berdasarkan hasil pengujian disimpulkan bahwa semakin besar X, Y, L maka semakin tinggi kemungkinannya untuk hasil evaluasi turun. Hasil pengujian membuktikan bahwa Term Based Random Sampling berhasil mendapatkan akurasi lebih tinggi dibandingkan dengan stopword Tala maupun tanpa menggunakan proses stopword removal. AbstractStopword Removal is part of the text preprocessing stage which aims to remove irrelevant words in a sentence based on the stopword list. The stopword list that is commonly used is in the form of a digital library whose list is already available, but not all words contained in the digital library are irrelevant words in certain data. This study uses a stopword list formed by the Term Based Random Sampling algorithm. In Term Based Random Sampling, there are 3 parameters, namely Y for the number of random word retrieval repetitions, X for the lowest number of weights in Y repetitions, and L as the percentage of the number of stopwords you want to use. So this research is aimed at finding the best combination of these 3 parameters and comparing the Term Based Random Sampling stopword with the stopword tuning and without the stopword removal process in the analysis of tweet sentiment regarding online lectures using the Naïve Bayes method. The results of the evaluation with the Term Based Random Sampling stopword get the highest accuracy with X, Y, L of 10, 10, 40 with a macroaverage accuracy of 0.758, a macroaverage precision of 0.658, a macroaverage recall of 0.636, and a macroaverage f-measure of 0.647. Based on the test results, it is concluded that the greater the X, Y, L, the higher the probability that the evaluation results will decrease. The test results prove that Term Based Random Sampling is successful in obtaining higher accuracy than stopword tuning or without using the stopword removal process.
id IOS577.article-4707
institution Universitas Brawijaya
institution_id 30
institution_type library:university
library
library Perpustakaan Universitas Brawijaya
library_id 480
collection Jurnal Teknologi Informasi dan Ilmu Komputer
repository_id 577
subject_area Program Komputer dan Teknologi Informasi
city MALANG
province JAWA TIMUR
repoId IOS577
first_indexed 2023-02-21T05:45:04Z
last_indexed 2024-06-02T20:42:49Z
recordtype dc
_version_ 1800783731888226304
score 17.538404