Integrasi Algoritma K-Means Dengan Bahasa SQL Untuk Klasterisasi IPK Mahasiswa (Studi Kasus: Fakultas Ilmu Komputer Universitas Brawijaya)

Main Author: Arwani, Issa
Format: Article info application/pdf eJournal
Bahasa: eng
Terbitan: Fakultas Ilmu Komputer, Universitas Brawijaya , 2015
Online Access: http://jtiik.ub.ac.id/index.php/jtiik/article/view/148
http://jtiik.ub.ac.id/index.php/jtiik/article/view/148/pdf
ctrlnum article-148
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><title lang="id">Integrasi Algoritma K-Means Dengan Bahasa SQL Untuk Klasterisasi IPK Mahasiswa (Studi Kasus: Fakultas Ilmu Komputer Universitas Brawijaya)</title><creator lang="en">Arwani, Issa</creator><description lang="id">AbstrakSecara umum, aplikasi klasterisasi diimplementasikan di luar DBMS dengan mengambil data terlebih dahulu dari basisdata untuk disimpan sementara dalam variabel program (misal dalam sebuah array), kemudian baru dilakukan proses klasterisasi. Permasalahan waktu dan keamanan dalam pengambilan data dari DBMS dan besarnya data yang akan diklasterisasi mendorong metode lain dimana proses klasterisasi bisa langsung dilakukan di DBMS. Klasterisasi dilakukan dengan mengintegrasikan algoritma klasterisasi pada DBMS menggunakan bahasa SQL. Pada penelitian ini difokuskan pada perancangan dan pengimplementasian integrasi algoritma klasterisasi K-means pada Relational DBMS dengan menggunakan bahasa SQL. Proses klasterisasi dilakukan dengan studi kasus data akademik mahasiswa di Fakultas Ilmu Komputer universitas Brawijaya dengan fitur IPK, sks tempuh, sks lulus dan semester. Berdasarkan hasil uji coba dataset akademik dengan variasi jumlah dimensi, jumlah klaster dan metode perhitungan jarak yang berbeda, telah didapatkan hasil pengklasteran data dengan benar. Berdasarkan hasil perhitungan kompleksitas waktu untuk tiap tahap implementasi K-means menggunakan SQL dan tanpa SQL, menunjukkan hasil kompleksitas waktu asimptotik yang sama dimana tahap menghitung euclidean distance membutuhkan kompleksitas waktu yang paling tinggi.Kata kunci: Clustering, K-means, SQL, IPK (Indeks Prestasi Kumulatif)AbstractGenerally, clustering implemented with taking data from database to be stored temporarily in a program variable (eg, in an array) then continue with clustering process. Direct clustering where the data is stored by integrating the clustering algorithm using the SQL language on the DBMS is proposed. In this study focused on the design and implementation of K-means clustering algorithm on a Relational DBMS using the SQL language. The clustering process carried out with a case study of GPA student in the Faculty of Computer Science University of Brawijaya. Based on results with a variety of dimensions, the number of clusters and different distance calculation methods, has obtained clustering data correctly. Based on time complexity to review each stage of the implementation K - means using SQL and without SQL, showing the same results of asymptotic time complexity where phase euclidean distance still requires the highest time complexity.Keywords: Clustering, K-means, SQL, GPA (Grade Point Average)AbstrakSecara umum, aplikasi klasterisasi diimplementasikan di luar DBMS dengan mengambil data terlebih dahulu dari basisdata untuk disimpan sementara dalam variabel program (misal dalam sebuah array), kemudian baru dilakukan proses klasterisasi. Permasalahan waktu dan keamanan dalam pengambilan data dari DBMS dan besarnya data yang akan diklasterisasi mendorong metode lain dimana proses klasterisasi bisa langsung dilakukan di DBMS. Klasterisasi dilakukan dengan mengintegrasikan algoritma klasterisasi pada DBMS menggunakan bahasa SQL. Pada penelitian ini difokuskan pada perancangan dan pengimplementasian integrasi algoritma klasterisasi K-means pada Relational DBMSdengan menggunakan bahasa SQL. Proses klasterisasi dilakukan dengan studi kasus data akademik mahasiswa di Fakultas Ilmu Komputer universitas Brawijaya dengan fitur IPK, sks tempuh, sks lulus dan semester. Berdasarkan hasil uji coba dataset akademik dengan variasi jumlah dimensi, jumlah klaster dan metode perhitungan jarak yang berbeda, telah didapatkan hasil pengklasteran data dengan benar. Berdasarkan hasil perhitungan kompleksitas waktu untuk tiap tahap implementasi K-means menggunakan SQL dan tanpa SQL, menunjukkan hasil kompleksitas waktu asimptotik yang sama dimana tahap menghitung euclidean distance membutuhkan kompleksitas waktu yang paling tinggi.&#xA0;Kata kunci: Clustering, K-means, SQL, IPK (Indeks Prestasi Kumulatif)Abstract Generally, clustering implemented with taking data from database to be stored temporarily in a program variable (eg, in an array) then continue with clustering process.Directclustering where the data is storedby integrating the clustering algorithm using the SQL language on the DBMS is proposed.In this study focused on the design and implementation of K-means clustering algorithm on a Relational DBMS using the SQL language. The clustering process carried out with a case study of GPA student in the Faculty of Computer Science University of Brawijaya.Based on results with a variety of dimensions, the number of clusters and different distance calculation methods, has obtained clustering data correctly. Based on time complexity to review each stage of the implementation K - means using SQL and without SQL, showing the same results of asymptotic time complexity where phase euclidean distance still requires the highest time complexity.&#xA0;Keywords: Clustering, K-means, SQL, GPA (Grade Point Average)</description><publisher lang="en">Fakultas Ilmu Komputer, Universitas Brawijaya</publisher><date>2015-07-22</date><type>Journal:Article</type><type>Other:info:eu-repo/semantics/publishedVersion</type><type>File:application/pdf</type><identifier>http://jtiik.ub.ac.id/index.php/jtiik/article/view/148</identifier><identifier>10.25126/jtiik.201522148</identifier><source lang="id">Jurnal Teknologi Informasi dan Ilmu Komputer; Vol 2 No 2: Oktober 2015; 143-151</source><source lang="en">Jurnal Teknologi Informasi dan Ilmu Komputer; Vol 2 No 2: Oktober 2015; 143-151</source><source>2528-6579</source><source>2355-7699</source><source>10.25126/jtiik.201522</source><language>eng</language><relation>http://jtiik.ub.ac.id/index.php/jtiik/article/view/148/pdf</relation><rights lang="en">Hak Cipta (c) 2016 Jurnal Teknologi Informasi dan Ilmu Komputer</rights><recordID>article-148</recordID></dc>
language eng
format Journal:Article
Journal
Other:info:eu-repo/semantics/publishedVersion
Other
File:application/pdf
File
Journal:eJournal
author Arwani, Issa
title Integrasi Algoritma K-Means Dengan Bahasa SQL Untuk Klasterisasi IPK Mahasiswa (Studi Kasus: Fakultas Ilmu Komputer Universitas Brawijaya)
publisher Fakultas Ilmu Komputer, Universitas Brawijaya
publishDate 2015
url http://jtiik.ub.ac.id/index.php/jtiik/article/view/148
http://jtiik.ub.ac.id/index.php/jtiik/article/view/148/pdf
contents AbstrakSecara umum, aplikasi klasterisasi diimplementasikan di luar DBMS dengan mengambil data terlebih dahulu dari basisdata untuk disimpan sementara dalam variabel program (misal dalam sebuah array), kemudian baru dilakukan proses klasterisasi. Permasalahan waktu dan keamanan dalam pengambilan data dari DBMS dan besarnya data yang akan diklasterisasi mendorong metode lain dimana proses klasterisasi bisa langsung dilakukan di DBMS. Klasterisasi dilakukan dengan mengintegrasikan algoritma klasterisasi pada DBMS menggunakan bahasa SQL. Pada penelitian ini difokuskan pada perancangan dan pengimplementasian integrasi algoritma klasterisasi K-means pada Relational DBMS dengan menggunakan bahasa SQL. Proses klasterisasi dilakukan dengan studi kasus data akademik mahasiswa di Fakultas Ilmu Komputer universitas Brawijaya dengan fitur IPK, sks tempuh, sks lulus dan semester. Berdasarkan hasil uji coba dataset akademik dengan variasi jumlah dimensi, jumlah klaster dan metode perhitungan jarak yang berbeda, telah didapatkan hasil pengklasteran data dengan benar. Berdasarkan hasil perhitungan kompleksitas waktu untuk tiap tahap implementasi K-means menggunakan SQL dan tanpa SQL, menunjukkan hasil kompleksitas waktu asimptotik yang sama dimana tahap menghitung euclidean distance membutuhkan kompleksitas waktu yang paling tinggi.Kata kunci: Clustering, K-means, SQL, IPK (Indeks Prestasi Kumulatif)AbstractGenerally, clustering implemented with taking data from database to be stored temporarily in a program variable (eg, in an array) then continue with clustering process. Direct clustering where the data is stored by integrating the clustering algorithm using the SQL language on the DBMS is proposed. In this study focused on the design and implementation of K-means clustering algorithm on a Relational DBMS using the SQL language. The clustering process carried out with a case study of GPA student in the Faculty of Computer Science University of Brawijaya. Based on results with a variety of dimensions, the number of clusters and different distance calculation methods, has obtained clustering data correctly. Based on time complexity to review each stage of the implementation K - means using SQL and without SQL, showing the same results of asymptotic time complexity where phase euclidean distance still requires the highest time complexity.Keywords: Clustering, K-means, SQL, GPA (Grade Point Average)AbstrakSecara umum, aplikasi klasterisasi diimplementasikan di luar DBMS dengan mengambil data terlebih dahulu dari basisdata untuk disimpan sementara dalam variabel program (misal dalam sebuah array), kemudian baru dilakukan proses klasterisasi. Permasalahan waktu dan keamanan dalam pengambilan data dari DBMS dan besarnya data yang akan diklasterisasi mendorong metode lain dimana proses klasterisasi bisa langsung dilakukan di DBMS. Klasterisasi dilakukan dengan mengintegrasikan algoritma klasterisasi pada DBMS menggunakan bahasa SQL. Pada penelitian ini difokuskan pada perancangan dan pengimplementasian integrasi algoritma klasterisasi K-means pada Relational DBMSdengan menggunakan bahasa SQL. Proses klasterisasi dilakukan dengan studi kasus data akademik mahasiswa di Fakultas Ilmu Komputer universitas Brawijaya dengan fitur IPK, sks tempuh, sks lulus dan semester. Berdasarkan hasil uji coba dataset akademik dengan variasi jumlah dimensi, jumlah klaster dan metode perhitungan jarak yang berbeda, telah didapatkan hasil pengklasteran data dengan benar. Berdasarkan hasil perhitungan kompleksitas waktu untuk tiap tahap implementasi K-means menggunakan SQL dan tanpa SQL, menunjukkan hasil kompleksitas waktu asimptotik yang sama dimana tahap menghitung euclidean distance membutuhkan kompleksitas waktu yang paling tinggi. Kata kunci: Clustering, K-means, SQL, IPK (Indeks Prestasi Kumulatif)Abstract Generally, clustering implemented with taking data from database to be stored temporarily in a program variable (eg, in an array) then continue with clustering process.Directclustering where the data is storedby integrating the clustering algorithm using the SQL language on the DBMS is proposed.In this study focused on the design and implementation of K-means clustering algorithm on a Relational DBMS using the SQL language. The clustering process carried out with a case study of GPA student in the Faculty of Computer Science University of Brawijaya.Based on results with a variety of dimensions, the number of clusters and different distance calculation methods, has obtained clustering data correctly. Based on time complexity to review each stage of the implementation K - means using SQL and without SQL, showing the same results of asymptotic time complexity where phase euclidean distance still requires the highest time complexity. Keywords: Clustering, K-means, SQL, GPA (Grade Point Average)
id IOS577.article-148
institution Universitas Brawijaya
institution_id 30
institution_type library:university
library
library Perpustakaan Universitas Brawijaya
library_id 480
collection Jurnal Teknologi Informasi dan Ilmu Komputer
repository_id 577
subject_area Program Komputer dan Teknologi Informasi
city MALANG
province JAWA TIMUR
repoId IOS577
first_indexed 2016-09-22T21:25:40Z
last_indexed 2024-06-02T20:42:37Z
recordtype dc
merged_child_boolean 1
_version_ 1800783720110620672
score 17.13294