SISTEM PENGENALAN WAJAH MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DENGAN ALGORITMA FUZZY C-MEANS (FCM)
Main Author: | Suryadi, Andri |
---|---|
Format: | Article info Quantitative Research application/pdf Journal |
Bahasa: | eng |
Terbitan: |
Institut Pendidikan Indonesia
, 2018
|
Subjects: | |
Online Access: |
http://e-mosharafa.org/index.php/mosharafa/article/view/mv4n2_2 http://e-mosharafa.org/index.php/mosharafa/article/view/mv4n2_2/194 |
Daftar Isi:
- Abstrak Berkembangnya ilmu pengetahuan dan teknologi dalam computer vision menjadikan keamanan komputer menjadi sangat penting. Salah satu contoh keamanan komputer adalah dengan cara pengenalan wajah. Skripsi ini membahas algoritma tentang pengenalan suatu wajah agar dapat dikenali oleh sistem komputer berdasarkan data training yang telah ada dalam database. Fitur-fitur yang terdapat dalam wajah akan dicari menggunakan Principal Component Analysis (PCA), sedangkan untuk tahap identifikasi menggunakan algoritma Fuzzy C-means (FCM). Principal Component Analysis akan digunakan untuk mereduksi citra wajah yang menghasilkan output berupa feature yang akan dijadikan inputan ke dalam algoritma fuzzy C-means. FCM mengelompokan data menjadi beberapa cluster yang masing-masing cluster diwakili pusat cluster. Pusat cluster inilah yang akan dijadikan dasar untuk mengenali data baru. Hasil pengujian yang telah dilakukan menggunakan PCA dan FCM dengan menggunakan 150 data latih yaitu sebesar 84%, 300 data latih yaitu 76% dan 450 data latih yaitu 76% sedangkan nilai akurasi rata-rata normal adalah 74%. Kemudian pengujian dengan tambahan noise yaitu menggunakan 150 data latih yaitu sebesar 26%, 300 data latih yaitu 14% dan 450 data latih yaitu 8% sedangkan nilai akurasi rata-rata noise adalah 16%. Dapat disimpulkan dengan menggunakan PCA dan FCM sistem pengenalan wajah ini menghasilkan akurasi cukup baik namun, sebaliknya dengan tambahan noise sistem pengenalan wajah tidak dapat berjalan dengan baik.