Prediksi Penjualan Mi Menggunakan Metode Extreme Learning Machine (ELM) Di Kober Mie Setan Cabang Soekarno Hatta

Main Author: Giusti, Ayustina
Format: Thesis NonPeerReviewed
Terbitan: , 2017
Subjects:
Online Access: http://repository.ub.ac.id/3521/
Daftar Isi:
  • Kober Mie Setan cabang Soekarno Hatta merupakan sebuah perusahaan yang bergerak pada bidang makanan. Jumlah permintaan konsumen restoran Kober Mie Setan cabang Soekarno Hatta yang tak menentu setiap waktu berpengaruh terhadap sisa bahan baku yang ada. Bahan baku yang terlalu lama disimpan tidak baik untuk dikonsumsi. Ketika permintaan rendah dan bahan baku yang disediakan tinggi, maka sisa bahan baku dari penjualan hari itu akan dibuang. Agar bahan baku tidak terbuang sia-sia, maka prediksi penjualan diperlukan oleh Kober Mie Setan cabang Soekarno Hatta. Dengan prediksi penjualan tersebut restoran dapat memprioritaskan pembelanjaan bahan baku menu tertentu yang memiliki keminatan tinggi sehingga sisa bahan baku dapat berkurang. Penelitian ini diterapkan metode dari Jaringan Syaraf Tiruan (JST) yaitu Extreme Learning Machine (ELM) untuk memprediksi penjualan mi di restoran Kober Mie Setan cabang Soekarno Hatta. Proses prediksi penjualan mi di Kober Mie Setan yaitu normalisasi data, proses training, proses testing, denormalisasi data, dan perhitungan nilai error menggunakan Mean Square Error (MSE). Metode ELM memiliki kelebihan dalam learning speed dan tingkat error yang kecil. Berdasarkan pengujian yang dilakukan untuk mengetahui perbedaan penggunaan fitur data dalam penelitian ini menghasilkan tingkat error terkecil yaitu 0.0171 dengan menggunakan fitur data historis dan fitur data sisa penjualan.