Klasifikasi Ulasan Palsu menggunakan metode Borderline Over-Sampling (BOS) Dan Support Vector Machine (SVM)
Main Author: | Awalina, Aisyah |
---|---|
Format: | Thesis NonPeerReviewed Book |
Bahasa: | eng |
Terbitan: |
, 2021
|
Subjects: | |
Online Access: |
http://repository.ub.ac.id/186274/1/Aisyah%20Awalina.pdf http://repository.ub.ac.id/186274/ |
Daftar Isi:
- Kemudahan memperoleh informasi saat ini telah banyak membantu manusia, salah satu mencari ulasan untuk tempat makan baru. Pencarian ulasan ini dipicu karena pengunjung tidak mengetahui layanan dari tempat tersebut. Ulasan juga dapat menguntungkan penjual, karena mereka mengetahui pengalaman yang dimiliki pengunjungnya. Oleh karena itu, ulasan palsu dimanfaatkan banyak orang untuk membuat ulasan palsu. Ulasan palsu bisa secara efektif dibedakan menggunakan machine learning. Namun, banyak dari dataset ulasan palsu ini tidak seimbang (imbalanced dataset) sehingga dapat mempengaruhi hasil klasifikasi. Oleh karena itu, penelitian ini menggunakan metode BOS untuk mengatasi tidak seimbangnya data dan melakukan klasifikasi dengan metode SVM. Adapun tahapan dari penelitian yaitu preprocessing, lalu pembobotan kata dengan tfidf dan fitur sentimen menggunakan lexicon-based features, dilanjutkan proses menyeimbangkan dataset dengan BOS, setelah itu proses klasifikasi oleh SVM. Adapun langkah dalam pengujian BOS dan SVM yaitu pembagian data latih dan uji dengan 80%:20%, setelah itu pencarian parameter terbaik pada data latih dengan 5-fold cross validation, dan dievaluasi dengan data uji. Adapun nilai parameter terbaik pada BOS dan SVM yaitu N dengan nilai 400% dimana hasil evaluasi akurasi dengan nilai 78,6%; precision dengan nilai 19,7%; recall dengan nilai 17,1%; f-measure dengan nilai 14,4%; dan g-mean dengan nilai 32%.