Optimasi Fuzzy Time Series Menggunakan Algoritme Particle Swarm Optimization Untuk Peramalan Nilai Pembayaran Penjaminan Kredit Macet
Main Author: | Ika, Ratna Candra |
---|---|
Format: | Thesis NonPeerReviewed Book |
Bahasa: | eng |
Terbitan: |
, 2017
|
Subjects: | |
Online Access: |
http://repository.ub.ac.id/1809/1/Ratna%20Candra%20Ika.pdf http://repository.ub.ac.id/1809/ |
Daftar Isi:
- Kredit macet atau kredit bermasalah yang terjadi di Indonesia tidak berjalan dengan konstan, melainkan dapat terjadi kenaikan maupun penurunan dalam setiap bulannya. Sehingga menyebabkan anggaran dana yang perlu disediakan untuk pembayaran penjaminan klaim kredit oleh lembaga penjaminan kredit tidak menentu. Oleh karena itu dibutuhkan adanya sistem yang dapat meramalkan nilai pembayaran penjaminan klaim kredit macet sebagai bahan pertimbangan untuk menentukan nominal yang harus disediakan untuk bulan selanjutnya oleh lembaga penjaminan kredit. Pada penelitian ini, peramalan dilakukan menggunakan metode Fuzzy Time Series, karena data yang digunakan tersusun secara runtut waktu dari bulan ke bulan. Untuk menghasilkan peramalan yang lebih baik, dilakukan optimasi menggunakan algoritme Particle Swarm Optimization (PSO), karena algoritme PSO memiliki desentralisasi yang tinggi dengan implementasi yang sederhana sehingga dapat menyelesaikan permasalahan optimasi secara efisien. Tingkat error dihitung menggunakan Root Mean Squared Error (RMSE). Berdasarkan pengujian, solusi terbaik yang dihasilkan memiliki rata-rata nilai cost sama dengan Rp. 159215 dengan waktu berjalannya program 13,2 detik. Solusi tersebut dihasilkan dengan iterasi maksimum sebesar 250, banyak populasi sebesar 100, dimensi partikel sebanyak 250, nilai variabel koefisien kognitif(c1) sama dengan 1 dan variabel koefisien sosial (c2) sama dengan 1.5, serta nilai bobot inersia (w) sama dengan 0,6. Sehingga dapat disimpulkan bahwa penelitian ini dapat diterapkan untuk peramalan nilai pembayaran penjaminan kredit macet.