Sistem Rekomendasi Dosen Pembimbing Berdasarkan Dokumen Judul Skripsi di Bidang Komputasi Cerdas Menggunakan Metode BM25

Main Author: Arisetiawan, Anak Agung Bagus
Format: Thesis NonPeerReviewed
Terbitan: , 2019
Subjects:
Online Access: http://repository.ub.ac.id/171574/
Daftar Isi:
  • Di dalam text mining terdapat suatu proses untuk melakukan temu kembali informasi atau information retrieval. Permasalahan yang berkaitan tentang temu kembali informasi ditemukan pada perguruan tinggi khususnya di Fakultas Ilmu Komputer Universitas Brawijaya (FILKOM UB). Permasalahannya adalah pemilihan dosen pembimbing skripsi untuk program studi S1 Teknik Informatika FILKOM UB pada keminatan Komputasi Cerdas masih dilakukan secara manual. Penentuan dosen pembimbing hanya mengandalkan pengetahuan personal terkait dengan spesialisasi dosen yang diperlukan untuk membimbing selama pengerjaan skripsi. Permasalahan tersebut dapat diselesaikan melalui sistem rekomendasi berdasarkan information retrieval menggunakan metode BM25. Proses yang dilakukan adalah preprocessing dokumen, perhitungan score BM25 pada setiap dokumen, dan mengambil hasil scoring BM25 tertinggi sebanyak nilai k. Pada penelitian ini dilakukan pengujian sebanyak 3 kali. Setiap pengujian menggunakan data testing yang sama sejumlah 20 dokumen. Hasil rata-rata dari setiap pengujian memperoleh hasil rekomendasi terbaik yaitu pada nilai k=3, dengan nilai precision @k sebesar 0,87. Semakin tinggi nilai k yang digunakan dapat mempengaruhi hasil rekomendasi menjadi kurang maksimal karena semakin banyak dokumen tidak relevan yang ikut terhitung.