Studi Perbandingan Peramalan Kebutuhan Energi Listrik Indonesia Menggunakan Metode Artificial Neural Network (ANN) dan Adaptive Neuro Fuzzy Inference System (ANFIS)
Main Author: | Dennis, Elisa Gumelar |
---|---|
Format: | Thesis NonPeerReviewed |
Terbitan: |
, 2018
|
Subjects: | |
Online Access: |
http://repository.ub.ac.id/162661/ |
Daftar Isi:
- Energi listrik adalah kebutuhan primer. Hal ini terjadi karena listrik sudah menjadi bagian penting dalam berbagai aspek kehidupan manusia, diantaranya aspek teknologi, ekonomi, sosial, dan budaya. Peramalan dibutuhkan untuk mengetahui kesiapan pembangkit dan seluruh peralatan penunjang dalam memenuhi kebutuhan serta keseimbangan supply dan demand. Terdapat banyak metode yang dapat digunakan untuk melakukan peramalan, namun saat ini metode yang berkembang adalah metode Artificial Intelligence atau Sistem cerdas. Metode yang digunakan pada penelitian ini adalah Jaringan Saraf Tiruan (JST) dan Adaptive Neuro Fuzzy Inference System (ANFIS), dengan membandingkan output sebagai parameter keakuratan dalam melakukan peramalan. Dua metode ini dibentuk dan dilatih menggunakan data ekonometrik seperti jumlah penduduk dan pertumbuhan ekonomi. Data diperoleh dari RUPTL PLN 2018-2027. Data statistik tahun 2008-2017 digunakan sebagai input dalam melakukan peramalan tahun 2018-2027. Keakuratan peramalan kedua metode ini dievaluasi menggunakan MAE dan RMSE. Dari hasil percobaan yang telah dilakukan, metode JST menghasilkan MAE sebesar 0,4779 TWh, RMSE sebesar 0,6068 TWh, dan error rata-rata per tahun sebesar 0,1482%. Sedangkan metode ANFIS menghasilkan MAE sebesar 19,3614 TWh, RMSE sebesar 26,6287 TWh, dan error rata-rata per tahun sebesar 5,2206%.