Visualisasi Data Iris Menggunakan Analisis Komponen Utama dan Analisis Komponen Utama Kernel

Main Author: Ismail Djakaria
Other Authors: -
Format: Article
Terbitan: Universitas Jember , 2010
Subjects:
Online Access: http://repository.ung.ac.id/karyailmiah/show/997/visualisasi_data_iris_menggunakan_analisis_komponen_utama__dan_analisis_komponen_utama_kernel.html
Daftar Isi:
  • Principal component analysis (PCA) is a method used to reduce dimentionality of the dataset. However, the use of PCA failed to carry out the problem of non-linear and non-separable data. To overcome this problem such data is more appropriate to use PCA method with the kernel function, which is known as the kernel PCA (KPCA). In this paper, Iris dataset visualized with PCA and KPCA, that contains are the length and the width of sepal and petal.