Emotion Classification of Song Lyrics using Bidirectional LSTM Method with GloVe Word Representation Weighting

Main Authors: Jiddy Abdillah, Ibnu Asror, Yanuar Firdaus Arie Wibowo
Format: Article info application/pdf Journal
Bahasa: eng
Terbitan: Ikatan Ahli Informatika Indonesia (IAII) , 2020
Subjects:
Online Access: http://jurnal.iaii.or.id/index.php/RESTI/article/view/2156
http://jurnal.iaii.or.id/index.php/RESTI/article/view/2156/284
Daftar Isi:
  • The rapid change of the music market from analog to digital has caused a rapid increase in the amount of music that is spread throughout the world as well because music is easier to make and sell. The amount of music available has changed the way people find music, one of which is based on the emotion of the song. The existence of music emotion recognition and recommendation helps music listeners find songs in accordance with their emotions. Therefore, the classification of emotions is needed to determine the emotions of a song. The emotional classification of a song is largely based on feature extraction and learning from the available data sets. Various learning algorithms have been used to classify song emotions and produce different accuracy. In this study, the Bidirectional Long-short Term Memory (Bi-LSTM) deep learning method with weighting words using GloVe is used to classify the song's emotions using the lyrics of the song. The result shows that the Bi-LSTM model with dropout layer and activity regularization can produce an accuracy of 91.08%. Dropout, activity regularization and learning rate decay parameters can reduce the difference between training loss and validation loss by 0.15.
  • Perubahan pasar musik yang cukup cepat dari analog ke digital menyebabkan bertambahnya jumlah musik yang tersebar di dunia secara cepat juga karena musik lebih mudah untuk dibuat dan dijual. Banyaknya musik yang tersedia menyebabkan berubahnya cara orang menemukan musik, salah satunya yaitu berdasarkan emosi lagu. Adanya music emotion recognition and recommendation membantu pendengar musik menemukan lagu sesuai dengan emosi mereka. Oleh karena itu, klasifikasi emosi dibutuhkan untuk menentukan emosi sebuah lagu.  Klasifikasi emosi pada sebuah lagu sebagian besar didasarkan pada ekstraksi fitur dan learning dari set data yang tersedia. Berbagai algoritma learning telah digunakan untuk mengklasifikasikan emosi lagu dan menghasilkan akurasi yang berbeda. Dalam penelitian ini, metode deep learning Bidirectional Long-Short Term Memory (Bi-LSTM) dengan pembobotan kata menggunakan GloVe digunakan untuk mengklasifikasikan emosi lagu menggunakan lirik dari lagu tersebut. Pada penelitian ini, hasilnya menunjukkan bahwa model Bi-LSTM dengan dropout layer dan activity regularization dapat menghasilkan akurasi sebesar 91.08%. Parameter dropout, activity regularization dan learning rate decay dapat mengurangi selisih training loss dan validation loss sebesar 0.15.