Pengembangan voice recognition menggunakan tensorflow ichenli train_mnist_image untuk aplikasi deep speech
Main Author: | Diana Firdaus, Rahmatika |
---|---|
Format: | Monograph NonPeerReviewed Book |
Bahasa: | ind |
Terbitan: |
Institut Teknologi Telkom Purwokerto
, 2018
|
Subjects: | |
Online Access: |
http://repository.ittelkom-pwt.ac.id/5371/1/COVER.pdf http://repository.ittelkom-pwt.ac.id/5371/2/ABSTRAK.pdf http://repository.ittelkom-pwt.ac.id/5371/3/ABSTRACT.pdf http://repository.ittelkom-pwt.ac.id/5371/4/BAB%20I.pdf http://repository.ittelkom-pwt.ac.id/5371/5/BAB%20II.pdf http://repository.ittelkom-pwt.ac.id/5371/6/BAB%20III.pdf http://repository.ittelkom-pwt.ac.id/5371/7/DAFTAR%20PUSTAKA.pdf http://repository.ittelkom-pwt.ac.id/5371/8/LAMPIRAN.pdf http://repository.ittelkom-pwt.ac.id/5371/ |
Daftar Isi:
- Practical Work (KP) is a mandatory activity that must be carried out by every student of the Purwokerto Institute of Technology as a requirement to take a thesis course. The author is placed in PT Menara Multimedia Telkom Solution Jakarta. The author is given the task of making a Deep Speech application or voice recognition device. The Deep Speech application aims to convert voice to text automatically to recognize various sound characters according to the conversation content. In a variety of smart phones already embedded many applications that can convert sound into text according to the command. The author is given the task of studying a Tensorflow Ichenli Train_Mnist_Image. The aim of learning Tensorflow is to find the simplest script with the highest accuracy to be implemented into the Deep Speech Application script. The result is the Ichenli Train_Mnist_Image script is not suitable to be implemented because it is long and complicated and very small accuracy of 0.1105