Spektrum adjacency, laplace, signless laplace, dan detour graf subgrup dan komplemen graf subgrupdari grup dihedral
Main Author: | Akhadiyah, Dinda Akromatul |
---|---|
Format: | Thesis NonPeerReviewed Book |
Bahasa: | ind |
Terbitan: |
, 2018
|
Online Access: |
http://etheses.uin-malang.ac.id/13337/1/14610071.pdf http://etheses.uin-malang.ac.id/13337/ |
Daftar Isi:
- INDONESIA: Penelitian ini membahas pola umum spektrum adjacency, Laplace, signless Laplace, dan detour dari graf subgrup dan komplemen graf subgrup 〈r^2 〉 dari grup dihedral D_2n. Spektrum diperoleh dengan terlebih dahulu menentukan subgrup normal dari suatu grup dihedral (D_2n ) yang dibangun oleh r^2 sehingga diperoleh beberapa kasus n genap sajadann≥4. Kemudian mencari nilai Eigen dan vektor Eigen. Sehingga diperoleh hasil penelitian sebagai berikut: 1. Pada graf subgrup hanya didapatkan spektrum adjacency, Laplace dan signless Laplace. Spektrum detour tidak dapat ditentukan karena graf yang diperoleh adalah graf tidak terhubung. 2. Pada komplemen graf subgrup didapatkan spektrum adjacency, Laplace,signless Laplace dan detour karena graf yang diperoleh adalah graf terhubung. ENGLISH: This research discusses adjacency, Laplacian, signless Laplacian, and detour spectrum from subgroup graph and complement of subgroup graph 〈r^2 〉 of dihedral group D_2n. Firstly, the spectrum is obtained by determining the normal subgroups of a dihedral group (D_2n ) which is constructed by r^2. It generates some cases of n is even and n≥4. Secondly, calculating the Eigen value and Eigen vector. The results of this research are as follows: 1. On the subgroup graph, it is found that there are the adjacency, Laplacian, and signless Laplacian spectrum. The detour spectrum can not be found because the graph is non-connected. 2. On complement of subgroup graph, the adjacency, Laplace, signless Laplace, and detour spectrum are found since the graph is connected.