Daftar Isi:
  • Pengenalan tulisan tangan dipengaruhi oleh fitur ekstraksi, fitur seleksi, dan klasifikasi. Pada tugas akhir ini akan fokus pada fitur ekstraksi. Wavelet transform dari projection profile merupakan salah satu metode ekstraksi ciri. Metode ekstraksi ciri projection profile yaitu mencari nilai density dari sebuah matriks citra secara vertical projection (per kolom) dan horizontal projection (per baris), sedangkan wavelet transform yaitu mendekomposisi sebuah citra satu dimensi untuk mendapatkan sebuah koefisien dari sebuah citra. Pada tugas akhir ini diimplementasikan metode ekstraksi ciri wavelet transform dari projection profile untuk dapat mengenali tulisan tangan huruf kapital. Langkah pertama; citra akan dilakukan binerisasi, inversi, segmentasi, cropping, dan resize, langkah kedua; citra diekstraksi ciri menggunakan projection profile secara vertical projection dan horizontal projection, langkah ketiga; vertical projection dan horizontal projection didekomposisi dua level menggunakan filter db2, db6, sym4, sym6, coif1, dan coif2 sehingga akan didapatkan coefficient approximation dan detail vertical level 2, coefficient approximation dan detail horizontal level 2, langkah keempat; coefficient tersebut menjadi input Multi Layer Perceptron untuk training, langkah kelima; testing menggunakan MLP. Didapatkan hasil akurasi pengenalan sebesar 84.22% dengan akurasi tertinggi menggunakan filter coif2 sebesar 85.13 %.