Weather parameters forecasting as variables for rainfall prediction using adaptive neuro fuzzy inference system (ANFIS) and support vector regression (SVR)

Main Authors: Novitasari, D.C.R, Rohayani, H., Suwanto, , Arnita, , Rico, , Junaidi, R., Setyowati, Rr. D.N, Pramulya, R., Setiawan, F.
Format: Proceeding PeerReviewed Book
Bahasa: ind
Terbitan: , 2019
Subjects:
Online Access: http://digilib.unimed.ac.id/51019/1/Turnitin.pdf
http://digilib.unimed.ac.id/51019/
https://iopscience.iop.org/article/10.1088/1742-6596/1501/1/012012/pdf
ctrlnum 51019
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><relation>http://digilib.unimed.ac.id/51019/</relation><title>Weather parameters forecasting as variables for rainfall prediction using adaptive neuro fuzzy inference system (ANFIS) and support vector regression (SVR)</title><creator>Novitasari, D.C.R</creator><creator>Rohayani, H.</creator><creator>Suwanto, </creator><creator>Arnita, </creator><creator>Rico, </creator><creator>Junaidi, R.</creator><creator>Setyowati, Rr. D.N</creator><creator>Pramulya, R.</creator><creator>Setiawan, F.</creator><subject>QA Mathematics</subject><subject>QA273 Probabilities. Mathematical statistics</subject><subject>QA299 Analysis</subject><subject>QA76 Computer software</subject><subject>QA801 Analytic mechanics</subject><description>. The weather anomaly phenomenon that occurs can have some negative impact such&#xD; as flooding, floods will paralyze the economic activities of the community, transportation&#xD; activities, damage public infrastructure. In this research forecasting weather parameters as a&#xD; variable for predicting the amount of rainfall using the ANFIS method and Support Vector&#xD; Regression (SVR) with the aim to provide information on future weather conditions quickly and&#xD; accurately. The people can prepare themselves and prepare the equipment needed to deal with&#xD; it. Rainfall predicted based on synop data such us relative humidity, wind, and temperature. Each&#xD; parameters must forcasted by using ANFIS and the result used for predict rainfall. Accurate&#xD; prediction calculated using MSE and RMSE. Predictions of parameters that affect rainfall using&#xD; the ANFIS method shown that for wind speed predictions having RMSE of 1.975004,&#xD; temperature predictions have RMSE of 0.742332, and predictions of relative humidity have&#xD; RMSE of 3.871590. Predicted rainfall based on the data results of the nearest method preprocessing using the Support Vector Regression (SVR) method produces an MSE error value of&#xD; 0.0928</description><date>2019-11-02</date><type>Journal:Proceeding</type><type>PeerReview:PeerReviewed</type><type>Book:Book</type><language>ind</language><identifier>http://digilib.unimed.ac.id/51019/1/Turnitin.pdf</identifier><identifier> Novitasari, D.C.R and Rohayani, H. and Suwanto, and Arnita, and Rico, and Junaidi, R. and Setyowati, Rr. D.N and Pramulya, R. and Setiawan, F. (2019) Weather parameters forecasting as variables for rainfall prediction using adaptive neuro fuzzy inference system (ANFIS) and support vector regression (SVR). In: International Conference on Science &amp; Technology (ICoST 2019), 2 &#x2013; 3 November 2019,, Yogyakarta, Indonesia. </identifier><relation>https://iopscience.iop.org/article/10.1088/1742-6596/1501/1/012012/pdf</relation><recordID>51019</recordID></dc>
language ind
format Journal:Proceeding
Journal
PeerReview:PeerReviewed
PeerReview
Book:Book
Book
author Novitasari, D.C.R
Rohayani, H.
Suwanto,
Arnita,
Rico,
Junaidi, R.
Setyowati, Rr. D.N
Pramulya, R.
Setiawan, F.
title Weather parameters forecasting as variables for rainfall prediction using adaptive neuro fuzzy inference system (ANFIS) and support vector regression (SVR)
publishDate 2019
topic QA Mathematics
QA273 Probabilities. Mathematical statistics
QA299 Analysis
QA76 Computer software
QA801 Analytic mechanics
url http://digilib.unimed.ac.id/51019/1/Turnitin.pdf
http://digilib.unimed.ac.id/51019/
https://iopscience.iop.org/article/10.1088/1742-6596/1501/1/012012/pdf
contents . The weather anomaly phenomenon that occurs can have some negative impact such as flooding, floods will paralyze the economic activities of the community, transportation activities, damage public infrastructure. In this research forecasting weather parameters as a variable for predicting the amount of rainfall using the ANFIS method and Support Vector Regression (SVR) with the aim to provide information on future weather conditions quickly and accurately. The people can prepare themselves and prepare the equipment needed to deal with it. Rainfall predicted based on synop data such us relative humidity, wind, and temperature. Each parameters must forcasted by using ANFIS and the result used for predict rainfall. Accurate prediction calculated using MSE and RMSE. Predictions of parameters that affect rainfall using the ANFIS method shown that for wind speed predictions having RMSE of 1.975004, temperature predictions have RMSE of 0.742332, and predictions of relative humidity have RMSE of 3.871590. Predicted rainfall based on the data results of the nearest method preprocessing using the Support Vector Regression (SVR) method produces an MSE error value of 0.0928
id IOS3150.51019
institution Universitas Negeri Medan
institution_id 60
institution_type library:university
library
library Perpustakaan Universitas Negeri Medan
library_id 564
collection Digital Repository Universitas Negeri Medan
repository_id 3150
subject_area Adat Istiadat
Agama
Akuntansi
city KOTA MEDAN
province SUMATERA UTARA
repoId IOS3150
first_indexed 2023-03-14T16:04:15Z
last_indexed 2023-03-14T16:04:15Z
recordtype dc
_version_ 1766033647091056640
score 17.538404