Diagnosa Tumor Otak Berdasarkan Citra MRI (Magnetic Resonance Imaging)
Main Authors: | Suta, Ida Bagus Leo Mahadya, Hartati, Rukmi Sari, Divayana, Yoga |
---|---|
Format: | Article info application/pdf eJournal |
Bahasa: | eng |
Terbitan: |
Universitas Udayana
, 2019
|
Online Access: |
https://ojs.unud.ac.id/index.php/jte/article/view/44849 https://ojs.unud.ac.id/index.php/jte/article/view/44849/32070 |
Daftar Isi:
- Brain tumors are one of the most deadly diseases, one of the most common types is glioma, about 6 out of 100,000 patients are glioma sufferers. Digital imagery through Magnetic Resonance Imaging (MRI) is one method to help doctors analyze and classify brain tumor types. However, manual classification requires a long time and has a high risk of errors, so an automatic and accurate method is needed to classify MRI images. Convolutional Neural Network (CNN) is one of the solutions for automatic classification in MRI images. CNN is a deep learning algorithm that has the ability to learn on its own from the previous case. And from the research that has been done, the results obtained that CNN is able to complete the classification of brain tumors with high accuracy. Accuracy enhancements are obtained by developing the CNN algorithm either by determining the kernel value and / or activation function.
- Tumor otak menjadi salah satu penyakit yang paling mematikan, salah satu jenis yang paling banyak ditemukan adalah glioma sekitar 6 dari 100.000 pasien adalah penderita glioma. Citra digital melalui Magnetic Resonance Imaging (MRI) merupakan salah satu metode untuk membantu dokter dalam menganalisa dan mengklasifikasikan jenis tumor otak. Namun, klasifikasi secara manual membutuhkan waktu yang lama dan memiliki resiko kesalahan yang tinggi, untuk itu dibutuhkan suatu cara otomatis dan akurat dalam melakukan klasifikasi citra MRI. Convolutional Neural Network (CNN) menjadi salah satu solusi dalam melakukan klasifikasi otomatis dalam citra MRI. CNN merupakan algoritma deep learning yang memiliki kemampuan untuk belajar sendiri dari kasus kasus sebelumnya. Dan dari penelitian yang telah dilakukan, diperoleh hasil bahwa CNN mampu dalam menyelesaikan klasifikasi tumor otak dengan akurasi yang tinggi. Peningkatan akurasi diperoleh dengan mengembangkan algoritma CNN baik melalui menentukan nilai kernel dan/atau fungsi aktivasi.