Fast Denoising Filter for MRI using Parallel Approach
Main Authors: | Oza, Shraddha Dinesh; Army Institute of Technology, Pune, India, Joshi, Kalyani Rajiv; PES Modern College of Engineering, Pune , india |
---|---|
Format: | Article info application/pdf eJournal |
Bahasa: | eng |
Terbitan: |
IAES Indonesian Section
, 2018
|
Subjects: | |
Online Access: |
http://section.iaesonline.com/index.php/IJEEI/article/view/596 http://section.iaesonline.com/index.php/IJEEI/article/view/596/330 |
Daftar Isi:
- Real time medical image processing is necessary in the domain of remote medical care, diagnostics and surgery. To provide fast MRI diagnostics especially for neuro imaging, the research work proposes CUDA GPU based fast denoising filter with a parallel approach. Bilateral filter is the most suitable candidate for denoising, as it has unique ability to retain contours of soft tissue structures of the brain. The work proposes improvised memory optimization techniques for the GPU implementation to achieve superior performance in terms of speed up when compared with existing work. For a 64Megapixel brain MR image, shared memory approach gives speed up of 256.5 while texture memory usage with tiling approach stands the next in speedup with 42.16 over its CPU counterpart. The results indicate that in spite of increase in image size, the execution time of the filter does not increase beyond 500msec keeping the performance real time.