Daftar Isi:
  • Dalam Tugas Akhir ini dibabas masalah optimasi, menentukan X* = (4 , ,..., 4 ) yang meminimalkan f (X), X e dengan kendala gi(X) < 0, i = 1,Z...,m Masalah optimasi ini diubah menjadi suatu barisan masalah optimasi tanpa kendala kemudian barisan solusi dari masalah optimasi tanpa kendala ini ditunjukkan konvergen kesolusi dari masalah optimasi berkenciala. Solusi dari masalah optimasi tanpa kendala yang mernenuhi kriteria konvergensi akan merupakan solusi dari masalah optimasi dengan kendala. Masalab optimasi tanpa kendala ini diselesaikan dengan menggunakan metode fungsi penalti baik fungsi penalti interior maupun fungsi penalti eksterior. This final task discussed about an optimization problem, * find X* = (xi ,x2,...,xj which minimizes f (X), X E R" subject to g, (X) 0, i = 1,Z...,m The optimization problem is converted into the sequence of unconstrained optimization problem. And then, the solution sequence from unconstrained optimization problem is shown by convergence to solution from constrained optimization problem. The solution of unconstrained optimization problem, which fill the convergence criteria, will be a solution from constrained optimization problem. The unconstrained optimization problem is finished by using of penalty function method. It will be both interior penalty function method and exterior penalty function method.