Daftar Isi:
  • Misalkan E suatu lapangan galois dengan q elernen, untuk q prima, dinotasikan dengan GF(q), terdapat suatu elemen a yang merupakan akar dari polinomial karakteristik tak tereduksi atas GF(q). Selanjutnya a akan membentuk barisan perigulangan atau rekursi. st = aist_i a2st_2 + ...+ a,„st-in Trace dari 8 e GF(e) atas GF(q) didefinisikan dalam bentuk st = Tr(0a) juga memenuhi bentuk rekursi. Dengan mencari order dari a , maka setiap solusi selain nol dari barisan rekursi tersebut mempuriyai periode. Let E be a galois field with q elements, for q prime, is denoted by GF(q), there is exist an element a is root of the characteristic polynomial is irreducible over GF(q). Then a will made a linear recurring or recurrences s, = ais,_, + a2s1.2 + ...+ . The trace of e e GF(qm) over GF(q) can be dinned in the form s, = Tr(eat) and it's also satusfies the recurrence. With find to the order of a, then every nonzero solution to the recurrence has period.