KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

Main Author: Irawanto, Bambang
Format: Article PeerReviewed application/msword application/pdf
Terbitan: Jurusan Matematika Lt. 2 FMIPA Universitas Diponegoro Semarang , 2001
Subjects:
Online Access: http://eprints.undip.ac.id/2095/1/Isi_Makalah_5_(Bambang_Irawanto).doc
http://eprints.undip.ac.id/2095/2/Isi_Makalah_5_(Bambang_Irawanto).pdf
http://eprints.undip.ac.id/2095/
Daftar Isi:
  • In this paper, it was learned of the necessary and sufficient condition for finite field with pn elements, p prime and n  1 an integer. A field F is an extention field of a field K if K subfield F. The extension field F of field K is Splitting field of collection polinomial { fi (x) | i  I } of K if F smallest subfield containing K and all the zeros in of the polinomial fi(x). The zeros of polinomial fi(x) are elements of field F and the elements of F is finite then F is finite field (Galois fileld). F is finite with pn elements, p prime and n  1 an integer if only if F is Splitting field of - x over Zp