Size multipartite Ramsey numbers for stripes versus small cycles
Main Authors: | Jayawardene, Chula Janak; Department of Mathematics, University of Colombo, Colombo, Sri Lanka, Baskoro, Edy Tri; Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia, Samarasekara, Lilanthi; Department of Mathematics, University of Colombo, Colombo, Sri Lanka, Sy, Syafrizal; Universitas Andalas, Padang, Indonesia |
---|---|
Format: | Article info application/pdf eJournal |
Bahasa: | eng |
Terbitan: |
GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB
, 2016
|
Subjects: | |
Online Access: |
http://www.ejgta.org/index.php/ejgta/article/view/179 http://www.ejgta.org/index.php/ejgta/article/view/179/pdf_23 |
Daftar Isi:
- For simple graphs $G_1$ and $G_2$, the size Ramsey multipartite number $m_j(G_1, G_2)$ is defined as the smallest natural number $s$ such that any arbitrary two coloring of the graph $K_{j \times s}$ using the colors red and blue, contains a red $G_1$ or a blue $G_2$ as subgraphs. In this paper, we obtain the exact values of the size Ramsey numbers $m_j(nK_2, C_m)$ for $j \ge 2$ and $m \in \{3,4,5,6\}$.