Removal of copper ions from aqueous solution by adsorption using laboratories-modified bentonite (organo-bentonite)

Main Authors: Sandy, ., Maramis, Velycia, Kurniawan, Alfin, Ayucitra, Aning, Sunarso, Jaka, Ismadji, Suryadi
Format: Article PeerReviewed Book
Bahasa: eng
Terbitan: SP Higher Education Press , 2012
Subjects:
Online Access: http://repository.wima.ac.id/10782/1/FCE-0058-11060-SD-offprint.pdf
http://repository.wima.ac.id/10782/2/R%2012%201-2.pdf
http://repository.wima.ac.id/10782/
https://link.springer.com/article/10.1007/s11705-011-11-60-6
Daftar Isi:
  • Equilibrium, kinetic and thermodynamic aspects of the adsorption of copper ions from an aqueous solution using linear alkylbenzene sulfonate (LABORA- TORIES) modified bentonite (organo-bentonite) are reported. Modification of bentonite was performed via microwave heating with a concentration of LABORA- TORIES surfactant equivalent to 1.5 times that of the cation exchange capacity (CEC) of the raw bentonite. Experimental parameters affecting the adsorption process such as pH, contact time and temperature were studied. Several adsorption equations (e.g., Langmuir, Freundlich, Sips and Toth) with temperature dependency were used to correlate the equilibrium data. These models were evaluated based on the theoretical justifications of each isotherm parameter. The Sips model had the best fit for the adsorption of copper ions onto organo-bentonite. For the kinetic data, the pseudo-second order model was superior to the pseudo-first order model. Thermodynamically, the adsorption of copper ions occurs via chemisorption and the process is endothermic (ΔHo>0), irreversible (ΔSo>0) and nonspontaneous (ΔGo>0).