ctrlnum 24496
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><relation>http://repository.unika.ac.id/24496/</relation><title>Freshness Classification of Milkfish Using the Na&#xC3;&#xAF;ve Bayes Algorithm</title><creator>Priyono, Christianto Kurniawan</creator><subject>000 Computer Science, Information and General Works</subject><description>Ikan bandeng is a great demand for food as well as a livelihood for fishermen and traders. There are several ways that used as a manual alternative to test the freshness level of fish.&#xD; In this research, a system was built to detect the ikan bandeng's freshness level with Naive Bayes Classifier method. This research uses 150 training data&#xD; and 48 testing data that the training data is one of the most important factor. Based on the trial's result with one parameter, the result obtains 72,91% of&#xD; accuracy. Meanwhile the second trial is using 100 training data that obtains 75% of accuracy, and the third trial is using 150 training data that obtains 79,12% of&#xD; accuracy. The research uses three parameters gain 93,75% of accuracy.&#xD; The factors that influence the algorithm are mean value (R,G,B), the value of deviation standart on training data, and the amount of training data.</description><date>2020</date><type>Thesis:Thesis</type><type>PeerReview:NonPeerReviewed</type><type>Book:Book</type><language>eng</language><identifier>http://repository.unika.ac.id/24496/1/16.K1.0042_COVER.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.unika.ac.id/24496/2/16.K1.0042_BAB%201.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.unika.ac.id/24496/3/16.K1.0042_BAB%202.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.unika.ac.id/24496/4/16.K1.0042_BAB%203.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.unika.ac.id/24496/5/16.K1.0042_BAB%204.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.unika.ac.id/24496/6/16.K1.0042_BAB%205.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.unika.ac.id/24496/7/16.K1.0042_BAB%206.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.unika.ac.id/24496/8/16.K1.0042_DAFTAR%20PUSTAKA.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.unika.ac.id/24496/9/16.K1.0042_LAMPIRAN.pdf</identifier><identifier> Priyono, Christianto Kurniawan (2020) Freshness Classification of Milkfish Using the Na&#xC3;&#xAF;ve Bayes Algorithm. Other thesis, Universitas Katolik Soegijapranata Semarang. </identifier><recordID>24496</recordID></dc>
language eng
format Thesis:Thesis
Thesis
PeerReview:NonPeerReviewed
PeerReview
Book:Book
Book
author Priyono, Christianto Kurniawan
title Freshness Classification of Milkfish Using the Naà ̄ve Bayes Algorithm
publishDate 2020
topic 000 Computer Science
Information and General Works
url http://repository.unika.ac.id/24496/1/16.K1.0042_COVER.pdf
http://repository.unika.ac.id/24496/2/16.K1.0042_BAB%201.pdf
http://repository.unika.ac.id/24496/3/16.K1.0042_BAB%202.pdf
http://repository.unika.ac.id/24496/4/16.K1.0042_BAB%203.pdf
http://repository.unika.ac.id/24496/5/16.K1.0042_BAB%204.pdf
http://repository.unika.ac.id/24496/6/16.K1.0042_BAB%205.pdf
http://repository.unika.ac.id/24496/7/16.K1.0042_BAB%206.pdf
http://repository.unika.ac.id/24496/8/16.K1.0042_DAFTAR%20PUSTAKA.pdf
http://repository.unika.ac.id/24496/9/16.K1.0042_LAMPIRAN.pdf
http://repository.unika.ac.id/24496/
contents Ikan bandeng is a great demand for food as well as a livelihood for fishermen and traders. There are several ways that used as a manual alternative to test the freshness level of fish. In this research, a system was built to detect the ikan bandeng's freshness level with Naive Bayes Classifier method. This research uses 150 training data and 48 testing data that the training data is one of the most important factor. Based on the trial's result with one parameter, the result obtains 72,91% of accuracy. Meanwhile the second trial is using 100 training data that obtains 75% of accuracy, and the third trial is using 150 training data that obtains 79,12% of accuracy. The research uses three parameters gain 93,75% of accuracy. The factors that influence the algorithm are mean value (R,G,B), the value of deviation standart on training data, and the amount of training data.
id IOS2679.24496
institution Universitas Katolik Soegijapranata
institution_id 334
institution_type library:university
library
library Perpustakaan Universitas Katolik Soegijapranata
library_id 522
collection Unika Repository
repository_id 2679
subject_area Akuntansi
Arsitektur
Ekonomi
city SEMARANG
province JAWA TENGAH
repoId IOS2679
first_indexed 2023-02-24T11:09:41Z
last_indexed 2023-02-24T11:09:41Z
recordtype dc
_version_ 1765771994335281152
score 17.538404