KLASIFIKASI SUARA JANTUNG MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION BERBASIS CIRI STATISTIS
Main Authors: | Wijaya, Nur Hudha, Soesanti, Indah, Firmansyah, Eka |
---|---|
Format: | Article info application/pdf eJournal |
Bahasa: | ind |
Terbitan: |
Prosiding SNATIF
, 2017
|
Online Access: |
http://jurnal.umk.ac.id/index.php/SNA/article/view/1247 http://jurnal.umk.ac.id/index.php/SNA/article/view/1247/866 |
Daftar Isi:
- AbstrakPara ahli memerlukan konsentrasi dalam pengambilan kesimpulan untuk menentukan kelainan suara jantung manusia. Menggali berbagai macam ciri untuk mengklasifikasikan suara jantung menjadi normal dan abnormal merupakan bagian yang sangat penting. Dengan metode artificial neural network (ANN) berbasis ciri statistis ini bekerja diranah spasial sehingga tidak perlu melakukan transformasi di ranah frekwensi. Suara jantung diklasifikasikan menjadi dua kelas yaitu normal dan abnormal. Penelitian ini terdapat data suara jantung normal sejumlah 8 suara, sedangkan data suara jantung abnormal sejumlah 13 suara. Pendekatan ciri statistis dengan menghitunng nilai mean, mode, variance, deviation, skewness, kurtosis, entropy klasifikasi dengan neural backpropagation memberikan hasil Accuracy = 91,72%, Sensitivity = 99,50%, Spesificity = 79,17%, Precision = 90,16%. Berdasarkan hasil klasifikasi dengan metode artificial neural network backpropagation menunjukkan accuracy mencapai 91,72%. Kata kunci: ekstraksi, ciri, suara, jantung, statistik.