IDENTIFIKASI KEMAMPUAN MATEMATIKA SISWA DALAM MENYELESAIKAN MASALAH GEOMETRI SMP DITINJAU DARI LEVEL FUNGSI KOGNITIF RIGOROUS MATHEMATICAL THINKING

Main Authors: BELLA PERTIWI, DHITA, Wijayanti, Pradnyo
Format: eJournal
Bahasa: ind
Terbitan: Jurusan Matematika UNESA , 2017
Online Access: http://ejournal.unesa.ac.id/index.php/mathedunesa/article/view/18517
Daftar Isi:
  • Abstrak Kemampuan matematika siswa dalam menyelesaikan masalah merupakan salah satu kemampuan yang penting untuk diketahui oleh pendidik terutama pada pembelajaran geometri SMP yang masih dianggap sulit oleh siswa. Hal ini didukung dengan masih rendahnya daya serap materi bangun datar pada UN SMP tahun 2014. Salah satu penyebab kegagalan siswa dalam menyelesaikan masalah geometri yaitu kurangnya prasyarat kognitif umum dimana kognitif ini sendiri mempengaruhi bagaimana siswa menerima, mengolah, dan memanggil informasi kembali dalam penyelesaian masalah. Sedangkan dalam menyelesaikan suatu masalah, dibutuhkan kegiatan berpikir matematis rigor yang mengacu pada ketelitian dan kelogisan jawaban. Dalam berpikir matematis rigor atau biasa disebut dengan Rigorous Mathematical Thinking (RMT) terdapat 3 level fungsi kognitif yang digunakan yaitu level 1 – berpikir kualitatif, level 2 – berpikir kuantitatif dengan ketelitian, serta level – 3 berpikir logis relasional abstrak. Penelitian ini bertujuan untuk mengidentifikasikan kemampuan matematika siswa pada level 1, 2, dan 3 fungsi kognitif RMT dalam menyelesaikan masalah geometri SMP. Penelitian ini merupakan penelitian deskriptif dengan pendekatan kualitatif. Subjek penelitian ini adalah tiga siswa kelas VII-D SMPN 1 Krian tahun ajaran 2015/2016 yang masing-masing mewakili level 1, 2, dan 3 fungsi kognitif RMT serta berjenis kelamin sama. Metode pengumpulan data yang digunakan yaitu metode tes dan wawancara. Data dianalisis berdasarkan indikator kemampuan matematika dalam menyelesaikan masalah serta kegiatan yang mungkin muncul pada saat subjek menyelesaikan permasalahan yang diberikan. Hasil penelitian menunjukkan bahwa terdapat peningkatan kemampuan matematika dalam menyelesaikan masalah geometri SMP dari ketiga subjek mulai dari subjek pada level berpikir kualitatif hingga subjek pada level berpikir logis relasional abstrak. Subjek pada level berpikir kualitatif hanya mampu memenuhi satu indikator saja yaitu memahami masalah. Subjek pada level berpikir kualitatif membuat sketsa yang tidak sesuai permasalahan, serta menggunakan rumus yang salah dan strategi yang tidak tepat. Subjek pada level berpikir kuantitatif dengan ketelitian juga hanya mampu memenuhi 1 indikator secara sempurna yaitu memahami masalah. Namun, subjek pada level berpikir kuantitatif dengan ketelitian sudah mampu merencanakan langkah penyelesaian yang tepat dalam penyelesaian masalah meskipun strategi yang dipilih dan diterapkan tidak sesuai sehingga jawaban yang dihasilkan salah. Sedangkan subjek pada level berpikir logis relasional abstrak mampu memenuhi keempat indikator kemampuan matematika dalam menyelesaikan masalah dengan baik. Subjek pada level berpikir logis relasional abstrak mampu memahami masalah secara lengkap, membuat sketsa yang sesuai dengan permasalahan asal, merencanakan strategi penyelesaian yang tepat, dan mampu memeriksa kembali hasil jawabannya dengan baik.  Kata Kunci: Kemampuan Penyelesaian Masalah, Rigorous Mathematical Thinking (RMT), Geometri, Level fungsi kognitif RMT   Abstract Student’s mathematical ability to solve problem is one of the important ability that should be known by the teachers especially in learning junior high school’s geometry which is considered as a difficult matter for the students. This is supported by the low absorption on flat shapes material in junior high school’s national examination year 2014. The cause of student’s failure in solving geometric problems is the lack of general cognitive prerequisites which influences how students receive, process, and retrieve information in problem solving. Meanwhile, solving problem definitely needs rigorous mathematical thinking which refers to the accuracy and logical answers. In rigorous mathematical thinking or commonly referred as RMT, there are 3 levels of cognitive function used, those are level 1 – thinking qualitatively, level 2 – thinking quantitatively with accuracy, and level 3 – relational abstract logical thinking. This research aims to identify the mathematical abilities of students at level 1, 2, and 3 cognitive function of RMT in solving junior high school’s geometric problems. This research is a descriptive research with qualitative approach. The subjects were three students of class VII-D SMPN 1 Krian school year 2015/2016, in which each of them represents level 1, 2, and 3 of RMT’s cognitive function with the same sex. Data collection method used in this research are tests and interviews. Data were analyzed based on the indicators of mathematical abilities in solving problems and activities that may arise when the subject solving the given problems. The results showed that the mathematical abilities in solving geometric problems increased for each of the three subjects ranging from the subject at thinking qualitatively level to subject at thinking relational abstract logical level. Subject at qualitative thinking level only able to fulfilled one indicator that was understanding the problem. The sketch of subject at qualitative thinking level were incorrect, and she used the wrong formula for her answer and also her strategies were not proper for the problems. Subjects at the level of thinking quantitatively with accuracy also fulfilled only one indicator perfectly, that was understanding the problem. However, she abled to plan the right steps to solve the issue despite the strategy chosen and applied were incorrect and she produced the wrong answer. While the subject at relational abstract logical thinking level were abled to fulfilled all the four indicators of mathematical abilities in solving problems. She was abled to understanding the problem completely, made the correct sketch according to the original problem, abled to planned the proper strategies and using the correct formula, and she were abled to looking back the answers properly. Keywords: Problem Solving Abilities, Rigorous Mathematical Thinking (RMT), Geometry, levels of cognitive function in RMT