Pemodelan Faktor-Faktor yang Mempengaruhi Penggolongan Kredit di PT Bank X (Persero) Tbk dengan Menggunakan Metode Hybrid Genetic Algorithm - Logistic Regression
Main Authors: | Setianingsih, Ni Putu Budi; Institut Teknologi Sepuluh Nopember, Irhamah, Irhamah; Institut Teknologi Sepuluh Nopember |
---|---|
Format: | Article info application/pdf eJournal |
Bahasa: | eng |
Terbitan: |
Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS
, 2014
|
Subjects: | |
Online Access: |
http://ejurnal.its.ac.id/index.php/sains_seni/article/view/8078 http://ejurnal.its.ac.id/index.php/sains_seni/article/view/8078/2010 |
Daftar Isi:
- PT Bank X (Persero) Tbk menunjukkan kinerja baik dalam perkreditan sampai pada tahun 2010. Namun sampai pada akhir kuartal III tahun 2013, PT Bank X (Persero) Tbk menjadi salah satu bank persero di Indonesia yang mengalami peningkat-an rasio kredit bermasalah atau non performing loan (NPL). Ter-jadinya kredit bermasalah akan memberi dampak bagi kreditur maupun debitur. Untuk itu, penelitian ini melakukan pemodelan faktor-faktor yang mempengaruhi penggolongan kredit di PT Bank X (Persero) Tbk guna memprediksi risiko kredit dari calon debitur. Pemodelan tersebut dilakukan dengan menggunakan metode regresi logistik dan hybrid genetic algorithm – logistic regression terhadap data debitur di PT Bank X (Persero) Tbk. Fungsi fitness yang di-gunakan adalah ukuran kesesuaian model regresi logistik, yaitu pseudo R2 atau R_L^2 dan MSE. Metode hybrid genetic algorithm – logistic regression memberikan hasil yang lebih baik karena R_L^2 yang bernilai lebih tinggi dan MSE yang bernilai lebih rendah dibandingkan dengan hasil estimasi parameter model regresi logistik menggunakan metode maximum likelihood estimation (MLE).