Batas atas terkecil nilai eigen matriks antiadjacency dari graf simetrik = The smallest upper bound of eigenvalue of antiadjacency matrix of symmetric graph
Main Author: | Noni Selvia, author |
---|---|
Format: | Masters Bachelors |
Terbitan: |
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia
, 2015
|
Subjects: | |
Online Access: |
http://lib.ui.ac.id/file?file=digital/2016-2/20414897-T44083-Noni Selvia.pdf |
Daftar Isi:
- [Matriks antiadjacency merupakan salah satu cara untuk merepresentasikan suatu graf berarah. Misalkan adalah sebuah graf berarah dengan ( ). Matriks adjacency dari graf berarah adalah matriks ( ) berukuran , dengan = 1 jika terdapat busur berarah dari ke dengan dan lainnya akan bernilai 0. Matriks disebut sebagai matriks antiadjacency dari graf berarah dengan adalah matriks berukuran yang semua entrinya adalah 1. Pada tesis ini, dibahas batas atas terkecil nilai eigen dari suatu graf berarah simetrik. Selain itu, diberikan batas atas terkecil nilai eigen dari beberapa kelas graf berarah simetrik;Antiadjacency matrix is one of the ways to represent a directed graph. Let G be a directed graph with ( ) . The adjacency matrix of G is a matrix ( ) of order , with if there is an edge from to , for , otherwise will equals 0. The matrix is called the antiadjacency matrix of G, with is a matrix of order with all entries equal to 1. In this thesis, it will be shown the smallest upper bound of eigenvalues of symmetric graph. Moreover, it will be given the smallest upper bound of eigenvalues for several types of symmetric graphs;Antiadjacency matrix is one of the ways to represent a directed graph. Let G be a directed graph with ( ) . The adjacency matrix of G is a matrix ( ) of order , with if there is an edge from to , for , otherwise will equals 0. The matrix is called the antiadjacency matrix of G, with is a matrix of order with all entries equal to 1. In this thesis, it will be shown the smallest upper bound of eigenvalues of symmetric graph. Moreover, it will be given the smallest upper bound of eigenvalues for several types of symmetric graphs;Antiadjacency matrix is one of the ways to represent a directed graph. Let G be a directed graph with ( ) . The adjacency matrix of G is a matrix ( ) of order , with if there is an edge from to , for , otherwise will equals 0. The matrix is called the antiadjacency matrix of G, with is a matrix of order with all entries equal to 1. In this thesis, it will be shown the smallest upper bound of eigenvalues of symmetric graph. Moreover, it will be given the smallest upper bound of eigenvalues for several types of symmetric graphs, Antiadjacency matrix is one of the ways to represent a directed graph. Let G be a directed graph with ( ) . The adjacency matrix of G is a matrix ( ) of order , with if there is an edge from to , for , otherwise will equals 0. The matrix is called the antiadjacency matrix of G, with is a matrix of order with all entries equal to 1. In this thesis, it will be shown the smallest upper bound of eigenvalues of symmetric graph. Moreover, it will be given the smallest upper bound of eigenvalues for several types of symmetric graphs]