Radius spektral minimal dari kelas graf dengan diameter kurang dari empat = The minimal spectral radius of graphs with diameter less than four

Main Authors: Sukoto, author, Add author: Hengki Tasman, supervisor, Add author: Djati Kerami, examiner, Add author: Alhadi Bustaman, examiner
Format: Masters Bachelors
Terbitan: , 2011
Subjects:
Online Access: https://lib.ui.ac.id/detail?id=20376046
Daftar Isi:
  • [<b>ABSTRAK</b><br> Pada tesis ini dibahas radius spektral minimal untuk graf n simpul berdiameter 1, kemudian graf n simpul berdiameter 2 dan graf n simpul berdiameter 3. Pada graf berdiameter 1 dibahas untuk semua nilai n, tetapi untuk graf berdiameter 2 dan 3 yang dibahas hanya untuk banyaknya simpul n < 8. Hasil yang diperoleh adalah graf n simpul dengan diameter 1 memiliki radius spektral minimal n ? 1 dan graf n simpul dengan diameter 2 memiliki radius spektral minimal. <hr> <b>ABSTRACT</b><br> In this thesis we told about the minimal spectral radius for graphs n vertices with diameter 1, graphs n vertices with diameter 2 and graphs n vertices with diameter 3. For the graphs n vertices with diameter 1, we explored for all of n values. But for the graphs with diameters 2 and 3 we explored for n < 8. The results are the minimal spectral radius for graphs n vertices with diameter 1 equals n ? 1 and the minimal spectral radius for graphs n vertices with diameter 2 equals .;In this thesis we told about the minimal spectral radius for graphs n vertices with diameter 1, graphs n vertices with diameter 2 and graphs n vertices with diameter 3. For the graphs n vertices with diameter 1, we explored for all of n values. But for the graphs with diameters 2 and 3 we explored for n < 8. The results are the minimal spectral radius for graphs n vertices with diameter 1 equals n ? 1 and the minimal spectral radius for graphs n vertices with diameter 2 equals ., In this thesis we told about the minimal spectral radius for graphs n vertices with diameter 1, graphs n vertices with diameter 2 and graphs n vertices with diameter 3. For the graphs n vertices with diameter 1, we explored for all of n values. But for the graphs with diameters 2 and 3 we explored for n < 8. The results are the minimal spectral radius for graphs n vertices with diameter 1 equals n – 1 and the minimal spectral radius for graphs n vertices with diameter 2 equals .]