Pelabelan total busur ajaib b-busur berurutan pada graf lobster semi teratur Ln (r,0; 1,r) dan Ln (r,0; 1,s) = A b-edge consecutive edge magic total labeling on semi regular lobster graph (r,0; 1,r) and Ln (r,0; 1,s)

Main Author: Sri Wahyuni Wulandari, author
Format: Bachelors
Terbitan: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia , 2012
Subjects:
Online Access: http://lib.ui.ac.id/file?file=digital/20310323-S43071-Pelabelan total.pdf
Daftar Isi:
  • [<b>ABSTRAK</b><br> Misalkan suatu graf G = (V, E) dengan v = |V| simpul dan e = |E| busur adalah graf berhingga, sederhana, dan tidak berarah. Pelabelan total busur ajaib pada &#119866; adalah pemetaan bijektif f dari &#119881;&#8746;&#119864; ke himpunan bilangan bulat 1,2,3,?,&#119907;+&#119890; , dimana terdapat suatu konstanta &#119896; sedemikian sehingga bobot busur &#119908;&#119891; &#119909;&#119910; =&#119891; &#119909; +&#119891; &#119909;&#119910; +&#119891; &#119910; =&#119896; untuk setiap &#119909;&#119910;&#8712;&#119864;. Jika &#119891; adalah suatu pelabelan total busur ajaib dari G dan &#119891; &#119864; = &#119887;+1,&#119887;+2,&#119887;+3,?,&#119887;+&#119890; ,0&#8804;&#119887;&#8804;&#119907; maka &#119891; adalah pelabelan total busur ajaib b-busur berurutan. Pada makalah ini diberikan konstruksi pelabelan total busur ajaib b-busur berurutan pada salah satu kelas graf pohon, yaitu graf lobster semi reguler &#119871;&#119899; &#119903;,0;1,&#119903; dan &#119871;&#119899; &#119903;,0;1,&#119904; dengan &#119899;,&#119903;, dan &#119904; adalah bilangan-bilangan bulat positif. <hr> <b>ABSTRACT</b><br> Let G = (V, E) be a finite, simple, and undirected graph with v = |V| vertices and e = |E| edges. An edge magic total labeling of G is a bijection f from &#119881;&#8746;&#119864; to the set of consecutive integers 1,2,3,?,&#119907;+&#119890; , where there is a constant &#119896; such that &#119908;&#119891; &#119909;&#119910; =&#119891; &#119909; +&#119891; &#119909;&#119910; +&#119891; &#119910; =&#119896; for all &#119909;&#119910;&#8712;&#119864;. If &#119891; is an edge magic total labeling of G and &#119891; &#119864; = &#119887;+1,&#119887;+2,&#119887;+3,?,&#119887;+&#119890; ,0&#8804;&#119887;&#8804;&#119907;, then &#119891; is an b-edge consecutive edge magic total labeling. In this skripsi will be given constructions of b-edge consecutive magic total lebeling for a class of tree graph, that is semi regular lobster graph &#119871;&#119899; &#119903;,0;1,&#119903; and &#119871;&#119899; &#119903;,0;1,&#119904; with &#119899;,&#119903;, and &#119904; are positive integers., Let G = (V, E) be a finite, simple, and undirected graph with v = |V| vertices and e = |E| edges. An edge magic total labeling of G is a bijection f from &#119881;&#8746;&#119864; to the set of consecutive integers 1,2,3,?,&#119907;+&#119890; , where there is a constant &#119896; such that &#119908;&#119891; &#119909;&#119910; =&#119891; &#119909; +&#119891; &#119909;&#119910; +&#119891; &#119910; =&#119896; for all &#119909;&#119910;&#8712;&#119864;. If &#119891; is an edge magic total labeling of G and &#119891; &#119864; = &#119887;+1,&#119887;+2,&#119887;+3,?,&#119887;+&#119890; ,0&#8804;&#119887;&#8804;&#119907;, then &#119891; is an b-edge consecutive edge magic total labeling. In this skripsi will be given constructions of b-edge consecutive magic total lebeling for a class of tree graph, that is semi regular lobster graph &#119871;&#119899; &#119903;,0;1,&#119903; and &#119871;&#119899; &#119903;,0;1,&#119904; with &#119899;,&#119903;, and &#119904; are positive integers.]