Pelabelan total (a, d)- busur anti ajaib pada gabungan graf gabungan grag korona dan gabungan graf prisma

Main Authors: Murtiningrum, author, Add author: Kiki Ariyanti Sugeng, supervisor, Add author: Siti Aminah, supervisor, Add author: Djati Kerami, examiner, Add author: Hendri Murti, examiner, Add author: Arie Wibowo, examiner
Format: Masters Bachelors
Terbitan: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia , 2012
Subjects:
Online Access: https://lib.ui.ac.id/detail?id=20297724
Daftar Isi:
  • Misalkan &#119866;&#119866;(&#119901;&#119901;, &#119902;&#119902;) adalah sebuah graf dengan &#119901;&#119901; = |&#119881;&#119881;(&#119866;&#119866;) | dan &#119902;&#119902; = |&#119864;&#119864;(&#119866;&#119866;) | masing-masing adalah banyaknya simpul dan busur dari &#119866;&#119866;. Pelabelan total (a, d)-busur anti ajaib ((a, d)-PTBAA) dari sebuah graf &#119866;&#119866;(&#119901;&#119901;, &#119902;&#119902;) adalah sebuah pemetaan satu-satu f dari &#119881;&#119881;(&#119866;&#119866;) &#8746; &#119864;&#119864;(&#119866;&#119866;) ke himpunan {1, 2,?, &#119901;&#119901; + &#119902;&#119902;} sedemikian hingga himpunan bobot busur { &#119891;&#119891;(&#119906;&#119906;) + &#119891;&#119891;(&#119906;&#119906;&#119906;&#119906;) + &#119891;&#119891;(&#119907;&#119907;) &#8758; &#119906;&#119906;&#119906;&#119906; &#8712; &#119864;&#119864;(&#119866;&#119866;)} sama dengan {&#119886;&#119886;, &#119886;&#119886; + &#119889;&#119889;, &#119886;&#119886; + 2&#119889;&#119889;,?, &#119886;&#119886; + (&#119902;&#119902; &#8722; 1)&#119889;&#119889; } untuk suatu bilangan bulat a > 0 dan d &#8805; 0. Jika &#119891;&#119891;(&#119881;&#119881;) = {1, 2,?, &#119901;&#119901;} maka pelabelan f disebut pelabelan total super (a, d)-busur anti ajaib ((a, d)-PTSBAA), dan jika d = 0 maka pelabelan f disebut juga pelabelan total busur ajaib (PTBA). Pada tesis ini dibangun suatu konstruksi (a, d)-PTBAA pada gabungan m graf korona &#119862;&#119862;&#119899;&#119899; &#8858; &#119875;&#119875;2 isomorfik untuk &#119889;&#119889; = 0 dan &#119889;&#119889; = 2, dan gabungan m graf prisma &#119862;&#119862;&#119899;&#119899; × &#119875;&#119875;2 isomorfik untuk &#119889;&#119889; = 0, &#119889;&#119889; = 1 dan &#119889;&#119889; = 2. <hr><i>Let &#119866;&#119866;(&#119901;&#119901;, &#119902;&#119902;) is a graph with &#119901;&#119901; = |&#119881;&#119881;(&#119866;&#119866;) | and &#119902;&#119902; = |&#119864;&#119864;(&#119866;&#119866;) | be respectively the number of vertices and the number of edges of &#119866;&#119866;. An (a, d)-edge antimagic total labeling ((a, d)-EAT labeling) of a &#119866;&#119866;(&#119901;&#119901;, &#119902;&#119902;) graph is defined as a one-to-one mapping f from &#119881;&#119881;(&#119866;&#119866;) &#8746; &#119864;&#119864;(&#119866;&#119866;) onto the set {1, 2,?, &#119901;&#119901; + &#119902;&#119902;}, so that the set of weight { &#119891;&#119891;(&#119906;&#119906;) + &#119891;&#119891;(&#119906;&#119906;&#119906;&#119906;) + &#119891;&#119891;(&#119907;&#119907;) &#8758; &#119906;&#119906;&#119906;&#119906; &#8712; &#119864;&#119864;(&#119866;&#119866;)} is equal to {&#119886;&#119886;, &#119886;&#119886; + &#119889;&#119889;, &#119886;&#119886; + 2&#119889;&#119889;, ?,&#119886;&#119886;+&#119902;&#119902;&#8722;1&#119889;&#119889; for two integer a > 0 and d &#8805; 0. If &#119891;&#119891;&#119881;&#119881;=1, 2, ?, &#119901;&#119901; then f labeling is called super (a, d)-edge antimagic total labeling (super (a, d)-EAT labeling) and when d = 0 then f labeling is called edge magic total labeling (EMT labeling). In this thesis was constructed (a, d)-EAT labeling on union of isomorphic corona &#119862;&#119862;&#119899;&#119899; &#8858; &#119875;&#119875;2 graphs for &#119889;&#119889; = 0 and &#119889;&#119889; = 2, and union of isomorphic prisms &#119862;&#119862;&#119899;&#119899; × &#119875;&#119875;2 graphs for &#119889;&#119889; = 0, &#119889;&#119889; = 1 and &#119889;&#119889; = 2.</i>