METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN
Main Authors: | Adrika, Juanita, ', Syamsudhuha, Karma, Asmara |
---|---|
Format: | Article info application/pdf eJournal |
Bahasa: | eng |
Terbitan: |
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
, 2014
|
Online Access: |
http://jom.unri.ac.id/index.php/JOMFMIPA/article/view/3678 http://jom.unri.ac.id/index.php/JOMFMIPA/article/view/3678/3570 |
Daftar Isi:
- We discuss a preconditioned Gauss-Seidel method to solve a system of linear equation Ax = b by A which is a strictly diagonally dominant Z-matrix. Preconditioning matrix to be used is P = (I +U) −1 , where I is an identity matrix and U is a strictly upper triangular matrix. Using Neumann’s expansion to approximate P, we showthat the preconditioning matrix is equivalent to an existing preconditioning matrix of the form P = (I + βU). Numerical computations show that the proposed preconditionedGauss-Seidel method is better than the standard Gauss-Seidel method in solving a system of linear equation Ax = b.