METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN

Main Authors: Adrika, Juanita, ', Syamsudhuha, Karma, Asmara
Format: Article info application/pdf eJournal
Bahasa: eng
Terbitan: Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam , 2014
Online Access: http://jom.unri.ac.id/index.php/JOMFMIPA/article/view/3678
http://jom.unri.ac.id/index.php/JOMFMIPA/article/view/3678/3570
Daftar Isi:
  • We discuss a preconditioned Gauss-Seidel method to solve a system of linear equation Ax = b by A which is a strictly diagonally dominant Z-matrix. Preconditioning matrix to be used is P = (I +U) −1 , where I is an identity matrix and U is a strictly upper triangular matrix. Using Neumann’s expansion to approximate P, we showthat the preconditioning matrix is equivalent to an existing preconditioning matrix of the form P = (I + βU). Numerical computations show that the proposed preconditionedGauss-Seidel method is better than the standard Gauss-Seidel method in solving a system of linear equation Ax = b.