BRAIN Journal-Motor Imagery signal Classification for BCI System Using Empirical Mode Décomposition and Bandpower Feature Extraction-Figure 1. General architecture of an online (BCI)

Main Authors: Dalila Trad, Tarik Al-Ani, Mohamed Jemni
Format: info Image eJournal
Bahasa: eng
Terbitan: , 2016
Subjects:
Online Access: https://www.edusoft.ro/brain/index.php/brain/article/view/591/652
ctrlnum 1173504
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><creator>Dalila Trad</creator><creator>Tarik Al-Ani</creator><creator>Mohamed Jemni</creator><date>2016-06-15</date><description>One major challenge of our BCI system is to describe the signals EEG by a few relevant values called features i.e. step 3 in Fig (1). The success of the mental imagery classification depends on the choice of features used to characterize the raw EEG signals. These features can then be used in step 4 in order to classify the user&#x2019;s mental state. Several approaches for feature extraction have been proposed in literature. </description><description>https://www.edusoft.ro/brain/index.php/brain/article/view/591/652</description><identifier>https://zenodo.org/record/1173504</identifier><identifier>10.5281/zenodo.1173504</identifier><identifier>oai:zenodo.org:1173504</identifier><language>eng</language><relation>doi:10.5281/zenodo.1173503</relation><relation>url:https://zenodo.org/communities/academiaedusoft</relation><rights>info:eu-repo/semantics/openAccess</rights><rights>https://creativecommons.org/licenses/by/4.0/</rights><source>BRAIN. Broad Research in Artificial Intelligence and Neuroscience 7(2) 5-16</source><subject>Brain Computer Interface</subject><subject>motor imagery</subject><subject>Bandpower</subject><subject>Empirical Mode Decomposition</subject><subject>Hidden Markov Model</subject><subject>Support Vector Machines</subject><title>BRAIN Journal-Motor Imagery signal Classification for BCI System Using Empirical Mode D&#xE9;composition and Bandpower Feature Extraction-Figure 1. General architecture of an online (BCI)</title><type>Other:info:eu-repo/semantics/other</type><type>Image:Image</type><recordID>1173504</recordID></dc>
language eng
format Other:info:eu-repo/semantics/other
Other
Image:Image
Image
Journal:eJournal
Journal
author Dalila Trad
Tarik Al-Ani
Mohamed Jemni
title BRAIN Journal-Motor Imagery signal Classification for BCI System Using Empirical Mode Décomposition and Bandpower Feature Extraction-Figure 1. General architecture of an online (BCI)
publishDate 2016
topic Brain Computer Interface
motor imagery
Bandpower
Empirical Mode Decomposition
Hidden Markov Model
Support Vector Machines
url https://www.edusoft.ro/brain/index.php/brain/article/view/591/652
contents One major challenge of our BCI system is to describe the signals EEG by a few relevant values called features i.e. step 3 in Fig (1). The success of the mental imagery classification depends on the choice of features used to characterize the raw EEG signals. These features can then be used in step 4 in order to classify the user’s mental state. Several approaches for feature extraction have been proposed in literature.
id IOS17403.1173504
institution Universitas PGRI Palembang
institution_id 189
institution_type library:university
library
library Perpustakaan Universitas PGRI Palembang
library_id 587
collection Marga Life in South Sumatra in the Past: Puyang Concept Sacrificed and Demythosized
repository_id 17403
city KOTA PALEMBANG
province SUMATERA SELATAN
repoId IOS17403
first_indexed 2022-07-26T03:53:56Z
last_indexed 2022-07-26T03:53:56Z
recordtype dc
merged_child_boolean 1
_version_ 1739481799060357120
score 17.538404