BRAIN Journal-Motor Imagery signal Classification for BCI System Using Empirical Mode Décomposition and Bandpower Feature Extraction-Figure 1. General architecture of an online (BCI)
Main Authors: | Dalila Trad, Tarik Al-Ani, Mohamed Jemni |
---|---|
Format: | info Image eJournal |
Bahasa: | eng |
Terbitan: |
, 2016
|
Subjects: | |
Online Access: |
https://www.edusoft.ro/brain/index.php/brain/article/view/591/652 |
ctrlnum |
1173504 |
---|---|
fullrecord |
<?xml version="1.0"?>
<dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><creator>Dalila Trad</creator><creator>Tarik Al-Ani</creator><creator>Mohamed Jemni</creator><date>2016-06-15</date><description>One major challenge of our BCI system is to describe the signals EEG by a few relevant values called features i.e. step 3 in Fig (1). The success of the mental imagery classification depends on the choice of features used to characterize the raw EEG signals. These features can then be used in step 4 in order to classify the user’s mental state. Several approaches for feature extraction have been proposed in literature. </description><description>https://www.edusoft.ro/brain/index.php/brain/article/view/591/652</description><identifier>https://zenodo.org/record/1173504</identifier><identifier>10.5281/zenodo.1173504</identifier><identifier>oai:zenodo.org:1173504</identifier><language>eng</language><relation>doi:10.5281/zenodo.1173503</relation><relation>url:https://zenodo.org/communities/academiaedusoft</relation><rights>info:eu-repo/semantics/openAccess</rights><rights>https://creativecommons.org/licenses/by/4.0/</rights><source>BRAIN. Broad Research in Artificial Intelligence and Neuroscience 7(2) 5-16</source><subject>Brain Computer Interface</subject><subject>motor imagery</subject><subject>Bandpower</subject><subject>Empirical Mode Decomposition</subject><subject>Hidden Markov Model</subject><subject>Support Vector Machines</subject><title>BRAIN Journal-Motor Imagery signal Classification for BCI System Using Empirical Mode Décomposition and Bandpower Feature Extraction-Figure 1. General architecture of an online (BCI)</title><type>Other:info:eu-repo/semantics/other</type><type>Image:Image</type><recordID>1173504</recordID></dc>
|
language |
eng |
format |
Other:info:eu-repo/semantics/other Other Image:Image Image Journal:eJournal Journal |
author |
Dalila Trad Tarik Al-Ani Mohamed Jemni |
title |
BRAIN Journal-Motor Imagery signal Classification for BCI System Using Empirical Mode Décomposition and Bandpower Feature Extraction-Figure 1. General architecture of an online (BCI) |
publishDate |
2016 |
topic |
Brain Computer Interface motor imagery Bandpower Empirical Mode Decomposition Hidden Markov Model Support Vector Machines |
url |
https://www.edusoft.ro/brain/index.php/brain/article/view/591/652 |
contents |
One major challenge of our BCI system is to describe the signals EEG by a few relevant values called features i.e. step 3 in Fig (1). The success of the mental imagery classification depends on the choice of features used to characterize the raw EEG signals. These features can then be used in step 4 in order to classify the user’s mental state. Several approaches for feature extraction have been proposed in literature. |
id |
IOS17403.1173504 |
institution |
Universitas PGRI Palembang |
institution_id |
189 |
institution_type |
library:university library |
library |
Perpustakaan Universitas PGRI Palembang |
library_id |
587 |
collection |
Marga Life in South Sumatra in the Past: Puyang Concept Sacrificed and Demythosized |
repository_id |
17403 |
city |
KOTA PALEMBANG |
province |
SUMATERA SELATAN |
repoId |
IOS17403 |
first_indexed |
2022-07-26T03:53:56Z |
last_indexed |
2022-07-26T03:53:56Z |
recordtype |
dc |
merged_child_boolean |
1 |
_version_ |
1739481799060357120 |
score |
17.538404 |