Inkjet-printed "Zero-Power" Wireless Sensor and Power Management Nodes for IoT and "Smart Skin" Applications

Main Authors: Traille, A., Georgiadis, Apostolos, Collado, Ana, Kawahara, Y., Aubert, H., Tentzeris, M.M.
Format: Proceeding
Terbitan: , 2014
Subjects:
Online Access: https://zenodo.org/record/581380
Daftar Isi:
  • Nanotechnology and inkjet-printed flexible electronics, sensor and power management (PMU) nodes fabricated on paper, plastic and other polymer substrates are introduced as a sustainable ultra-low-cost solution for the first paradigms of Internet of Things (IoT), “Smart Skins” and “Zero-Power” applications. The paper will cover examples from the state-of-the-art of fully integrated wireless sensor modules on paper or flexible polymers. We will demonstrate numerous 3D multilayer paper-based and LCP-based RF/Microwave Structures that include embedded energy harvesters and PMU's, that could potentially set the foundation for the truly convergent batteryless wireless Internet-of-Things networks of the future with enhanced cognitive intelligence and “zero-power” operability through ambient energy harvesting. Examples from wearable (e.g.biomonitoring) antennas and RF modules will be reported, as well as the first integration of inkjet-printed nanotechnology-based (e.g.CNT, graphene) sensors on paper and organic substrates. The talk will close with a discussion about the challenges for inkjet-printed high-complexity modules as future directions in the area of environmentally-friendly (“green”) RF electronics and “smart house” conformal IoT topologies.
  • © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.