Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings

Main Authors: MacDonald, Jan, Besançon, Pokutta, Sebastian
Format: info software Journal
Terbitan: , 2021
Subjects:
Online Access: https://zenodo.org/record/5718781
Daftar Isi:
  • This repository provides the official implementation of the paper Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings by J. Macdonald, M. Besançon and S. Pokutta (2021). We use a constrained optimization formulation of the Rate-Distortion Explanations (RDE) (Macdonald et al., 2019) method for relevance attribution and Frank-Wolfe algorithms for obtaining interpretable neural network predictions. The corresponding github repo is at https://github.com/ZIB-IOL/fw-rde