Deep Categorization of Blood Cells using Depthwise Convolutions

Main Authors: T Sudarshan Rao, N Rohan Sai, D Koteswara Rao
Other Authors: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)
Format: Article Journal
Bahasa: eng
Terbitan: , 2021
Subjects:
Online Access: https://zenodo.org/record/5616339
Daftar Isi:
  • Modern-day computation has become indispensable in the healthcare industry. From medical image processing to cost reduction, Artificial Intelligence has proved its significance in solving complex healthcare problems. One of the primary areas in which it can be of greater use in hematology. Categorization of white-blood cells is imperative to pre-identify abnormalities. Through this paper, we collected image samples for 4 major White Blood cell groups, which are Neutrophils, Lymphocytes, Monocytes, and Eosinophils. The aim of this research is to put forward an intelligent system that efficiently alleviates the stringent requirement of a cytological study. The proposed system classifies 4 white-blood-cell types based on their morphological variation. With the experimental modulations that we chose to integrate, the presented model attained an accuracy of 97%.