Relative stability toward diffeomorphisms indicates performance in deep nets

Main Authors: Leonardo Petrini, Alessandro Favero, Mario Geiger, Matthieu Wyart
Format: Proceeding Journal
Bahasa: eng
Terbitan: , 2021
Subjects:
vgg
Online Access: https://zenodo.org/record/5589870
ctrlnum 5589870
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><creator>Leonardo Petrini</creator><creator>Alessandro Favero</creator><creator>Mario Geiger</creator><creator>Matthieu Wyart</creator><date>2021-10-21</date><description>Code and pre-trained models used for the paper Relative stability toward diffeomorphisms indicates performance in deep nets, Petrini L. et al., NeurIPS2021. Fifteen different network architectures have been pre-trained on 4 benchmark datasets of images (MNIST, FashionMNIST, CIFAR10, SVHN) for different initialization seeds and train-set sizes for a total of 2'000+ pretrained models. Details on the available models can be found in the Pandas dataframe: pretrained_models_dataframe.pkl More details about the trainings are available in the reference paper (Appendix E) and at the GitHub repository: https://github.com/leonardopetrini/diffeo-sota For more info contact leonardo.petrini at epfl.ch</description><identifier>https://zenodo.org/record/5589870</identifier><identifier>10.5281/zenodo.5589870</identifier><identifier>oai:zenodo.org:5589870</identifier><language>eng</language><relation>arxiv:arXiv:2105.02468</relation><relation>doi:10.5281/zenodo.5589869</relation><rights>info:eu-repo/semantics/openAccess</rights><rights>https://creativecommons.org/licenses/by/4.0/legalcode</rights><subject>deep learning</subject><subject>cifar10</subject><subject>mnist</subject><subject>pretrained</subject><subject>image classification</subject><subject>resnet</subject><subject>vgg</subject><subject>alexnet</subject><subject>fashionmnist</subject><subject>svhn</subject><title>Relative stability toward diffeomorphisms indicates performance in deep nets</title><type>Journal:Proceeding</type><type>Journal:Proceeding</type><recordID>5589870</recordID></dc>
language eng
format Journal:Proceeding
Journal
Journal:Journal
author Leonardo Petrini
Alessandro Favero
Mario Geiger
Matthieu Wyart
title Relative stability toward diffeomorphisms indicates performance in deep nets
publishDate 2021
topic deep learning
cifar10
mnist
pretrained
image classification
resnet
vgg
alexnet
fashionmnist
svhn
url https://zenodo.org/record/5589870
contents Code and pre-trained models used for the paper Relative stability toward diffeomorphisms indicates performance in deep nets, Petrini L. et al., NeurIPS2021. Fifteen different network architectures have been pre-trained on 4 benchmark datasets of images (MNIST, FashionMNIST, CIFAR10, SVHN) for different initialization seeds and train-set sizes for a total of 2'000+ pretrained models. Details on the available models can be found in the Pandas dataframe: pretrained_models_dataframe.pkl More details about the trainings are available in the reference paper (Appendix E) and at the GitHub repository: https://github.com/leonardopetrini/diffeo-sota For more info contact leonardo.petrini at epfl.ch
id IOS16997.5589870
institution ZAIN Publications
institution_id 7213
institution_type library:special
library
library Cognizance Journal of Multidisciplinary Studies
library_id 5267
collection Cognizance Journal of Multidisciplinary Studies
repository_id 16997
subject_area Multidisciplinary
city Stockholm
province INTERNASIONAL
shared_to_ipusnas_str 1
repoId IOS16997
first_indexed 2022-06-06T04:38:17Z
last_indexed 2022-06-06T04:38:17Z
recordtype dc
_version_ 1734902697035825152
score 17.538404