Data from: Leaf litter nutrient uptake in an intermittent blackwater river: influence of tree species and associated biotic and abiotic drivers

Main Authors: Mehring, Andrew S., Kuehn, Kevin A., Thompson, Aaron, Pringle, Catherine M., Rosemond, Amy D., First, Matthew R., Lowrance, R Richard, Vellidis, George
Format: info dataset Journal
Terbitan: , 2015
Subjects:
Online Access: https://zenodo.org/record/5017737
Daftar Isi:
  • 1. Organic matter may sequester nutrients as it decomposes, increasing in total N and P mass via multiple uptake pathways. During leaf litter decomposition, microbial biomass and accumulated inorganic materials immobilize and retain nutrients, and therefore, both biotic and abiotic drivers may influence detrital nutrient content. We examined the relative importance of these types of nutrient immobilization and compared patterns of nutrient retention in recalcitrant and labile leaf litter. 2. Leaf packs of water oak (Quercus nigra), red maple (Acer rubrum) and Ogeechee tupelo (Nyssa ogeche) were incubated for 431 days in an intermittent blackwater stream and periodically analysed for mass loss, nutrient and metal content, and microbial biomass. These data informed regression models explaining temporal changes in detrital nutrient content. Informal exploratory models compared estimated biologically associated nutrient stocks (fungal, bacterial, leaf tissue) to observed total detrital nutrient stocks. We predicted that (i) labile and recalcitrant leaf litter would act as sinks at different points in the breakdown process, (ii) plant and microbial biomass would not account for the entire mass of retained nutrients, and (iii) total N content would be more closely approximated than total P content solely from nutrients stored in leaf tissue and microbial biomass, due to stronger binding of P to inorganic matter. 3. Labile litter had higher nutrient concentrations throughout the study. However, lower mass loss of recalcitrant litter facilitated greater nutrient retention over longer incubations, suggesting that it may be an important long-term sink. N and P content were significantly related to both microbial biomass and metal content, with slightly stronger correlation with metal content over longer incubations. 4. Exploratory models demonstrated that a substantial portion of detrital nutrients was not accounted for by living or dead plant and microbial biomass, especially in the case of N. This suggests increased importance of both N and P sorption to inorganic matter over time, with possible additional storage of N complexed with lignin. A better understanding of the influence of these mechanisms may improve our understanding of detrital nutrient uptake, basal resource quality and retention and transport of nutrients in aquatic ecosystems.
  • multiple regression datasetThis file contains the sampling date, stream incubation time (days), block (1-5), tree species (ar = Acer rubrum, no = Nyssa ogeche, qn = Quercus nigra), leaf litter AFDM remaining (grams), phosphorus (mg/g litter AFDM), nitrogen (mg/g litter AFDM), ergosterol (μg/g litter AFDM), bacterial C (mg/g litter AFDM), aluminum (mg/g litter AFDM), iron (mg/g litter AFDM), manganese (mg/g litter AFDM), inorganic matter (% litter AFDM), and glucosamine (μg/g litter AFDM) content of decaying leaf litter in the study stream.respirationThis file contains the sampling date, stream incubation time (days), tree species (ar = Acer rubrum, no = Nyssa ogeche, qn = Quercus nigra), block (1-5), and microbial respiration (mg O2/hour/g leaf AFDM) associated with decaying leaf litter in the study stream.Fiber analysisThis file contains the sampling date, stream incubation time (days), block (1-5), tree species (ar = Acer rubrum, no = Nyssa ogeche, qn = Quercus nigra), and hemicellulose, cellulose, and lignin content (% leaf litter AFDM) of decaying leaf litter in the study stream.fiber analysis final.xls