Determinants of introduction and invasion success for Proteaceae

Main Author: Moodley, Desika
Other Authors: Wilson, John
Format: info dataset Journal
Bahasa: eng
Terbitan: , 2013
Subjects:
Online Access: https://zenodo.org/record/4745640
Daftar Isi:
  • Successful biological invasions take place when species introduced to regions outside their natural dispersal range overcome several barriers and establish, persist, proliferate and spread potentially resulting in major threats to biodiversity. The success of invasive alien plants depends on species-specific traits and characteristics of the introduced environment. In this thesis I explore which species traits are important and which environmental barriers need to be overcome for an invasion to occur using Proteaceae as a test case. Firstly, I assessed the global introduction history and invasion ecology of Proteaceae - a large plant family with many taxa that have been widely disseminated by humans, but with few known invaders. This revealed that at least 402 species (i.e. 24% of 1674 species in this family) are known to have been moved by humans out of their native ranges, 58 species (14%) have become naturalized and 8 species (2%) are invasive. The probability of naturalization was greatest for species with large native range sizes, low susceptibility to Phytophthora root-rot disease, larger seeds, mammal-dispersed seeds and those with the capacity to resprout after fire or other disturbances. The probability of naturalized species becoming invasive was greater for species with larger range sizes, species used as barrier plants, taller species, species with smaller seeds, serotinous species, and those that regenerated mainly through re-seeding. Secondly, I looked at mechanisms underlying naturalization on a regional scale, using species which are not already classified as major invaders. At least 26 non-native Proteaceae species have been introduced to, and are cultivated in, South Africa. Propagule pressure facilitated the naturalization of Hakea salicifolia populations in climatically suitable areas, but in suboptimal climates human-mediated land disturbance and land management activities are important for naturalization. Similar drivers are important for naturalization of other alien Proteaceae: a long residence time, fire regimes, poor land management, and propagule pressure were important mechanisms for naturalization. Thirdly, I determined whether reproduction, which in part drives propagule pressure, serves as a barrier for naturalization. I examined several Australian Proteaceae species introduced to South Africa and observed that all species were heavily utilized by native nectar-feeding birds and insects. The five Banksia species that were assessed are self-compatible but four species have a significantly higher reproductive output when pollinators visit inflorescences. Fruit production in H. salicifolia does not differ between naturally-pollinated and autonomously-fertilized flowers. Moreover, no significant difference in fruit production was observed between the five pollination treatments (i.e. natural, pollen-supplementation, autonomous, hand-selfed and hand-crossed treatments) and naturalized and non-naturalized populations. However, pollen limitation was detected in non-naturalized populations which received fewer pollinator visits than naturalized populations. Thus, reproduction limits but is not a fundamental barrier to invasion for H. salicifolia. I conclude that reproductive success of the studied Proteaceae, which is a key barrier determining invasiveness, is not limited by autonomous seed set or mutualisms in the introduced range. In this thesis I highlight biogeographical characteristics, a set of life-history traits and ecological traits as important determinants of invasiveness. These traits are in turn dependent on the stage of invasion. Characteristics of the recipient environment are also important drivers of invasions. This study provides a better understanding of plant invasions in general, but the patterns and processes of invasions highlighted in this thesis will be particularly useful for the current and future management of alien Proteaceae in South Africa and elsewhere, as well as, other species that are adapted to Mediterranean and nutrient poor ecosystems. For example, combining traits of invasiveness and susceptible environments will help to identify which non-native species pose a high risk of becoming invasive (e.g. species with large home ranges and barrier plants) and which conditions in the target area are likely to facilitate or exacerbate invasions (e.g. strong climate match and high propagule pressure).