Supplementary material for "Modelling the Ringdown from Precessing Black Hole Binaries"
Main Author: | Finch, Eliot |
---|---|
Format: | info Video Journal |
Bahasa: | eng |
Terbitan: |
, 2021
|
Online Access: |
https://zenodo.org/record/4538194 |
Daftar Isi:
- Phys. Rev. D 103, 084048 (2021), arXiv:2102.07794 Fits of ringdown models to the \(h_{22}\) spherical harmonic mode of SXS simulations (where the spherical harmonic decomposition is done in a frame suited to the remnant black hole). Each video is for a particular SXS simulation and model, where the start time \(t_0\) is varied. File names take the form {SXS ID}_{ringdown model}_{model parameters}. Ringdown models Overtone: \(h_{\ell m}^N(t) = \sum_{n=0}^N C_{\ell m n} e^{-i\omega_{\ell m n}(t-t_0)}\) for \(t \geq t_0\). Mirror mode: \(h_{\ell m}^{N,\, {\rm mirror}}(t) = \sum_{n=0}^N \Big[ C_{\ell m n} e^{-i \omega_{\ell m n}(t-t_0)} + C'_{\ell m n} e^{i \omega^*_{\ell -m n}(t-t_0)} \Big]\) for \(t \geq t_0\). Harmonic: \(h_{\ell m}^{N,\,L,\, {\rm mirror}}(t) = \sum_{n=0}^N \sum_{l=2}^{L} \Big[ C_{l m n} e^{-i \omega_{l m n}(t-t_0)} + C'_{l m n} e^{i \omega^*_{l m n}(t-t_0)} \Big]\) for \(t \geq t_0\).