Distributed Deep Reinforcement Learning for Functional Split Control in Energy Harvesting Virtualized Small Cells
Main Authors: | Temesgene, Dagnachew Azene, Miozzo, Marco, Gündüz, Deniz, Dini, Paolo |
---|---|
Format: | Article Journal |
Bahasa: | eng |
Terbitan: |
, 2020
|
Subjects: | |
Online Access: |
https://zenodo.org/record/4430405 |
Daftar Isi:
- To meet the growing quest for enhanced network capacity, mobile network operators (MNOs) are deploying dense infrastructures of small cells. This, in turn, increases the power consumption of mobile networks, thus impacting the environment. As a result, we have seen a recent trend of powering mobile networks with harvested ambient energy to achieve both environmental and cost benefits. In this paper, we consider a network of virtualized small cells (vSCs) powered by energy harvesters and equipped with rechargeable batteries, which can opportunistically offload baseband (BB) functions to a grid-connected edge server depending on their energy availability. We formulate the corresponding grid energy and traffic drop rate minimization problem, and propose a distributed deep reinforcement learning (DDRL) solution. Coordination among vSCs is enabled via the exchange of battery state information. The evaluation of the network performance in terms of grid energy consumption and traffic drop rate confirms that enabling coordination among the vSCs via knowledge exchange achieves a performance close to the optimal. Numerical results also confirm that the proposed DDRL solution provides higher network performance, better adaptation to the changing environment, and higher cost savings with respect to a tabular multi-agent reinforcement learning (MRL) solution used as a benchmark.
- Grant numbers : 5G-REFINE - Resource EfFIcient 5G NEtworks (TEC2017-88373-R) and SCAVENGE - Sustainable CellulAr networks harVEstiNG ambient Energy (01 February 2016 - 31 March 2020).© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.