(Invited Talk) Intercalation engineering in layered Halide Perovskites
Main Authors: | Laurent PEDESSEAU, Mikael KEPENEKIAN, Boubacar TRAORE, Claudine KATAN, Jacky EVEN |
---|---|
Format: | info Proceeding Journal |
Bahasa: | eng |
Terbitan: |
, 2019
|
Online Access: |
https://videosjnpv2019.geeps.centralesupelec.fr/files/02a-mercredi-matin-20191204/pedesseaux.mp4 |
Daftar Isi:
- 3D halide perovskites are exciting materials for optoelectronic applications1 and amazing new solar cell devices2,3. 2D Halide Perovskites also allow both stabilizing and functionalizing the 3D structures. More, the number of available layered perovskite compounds is increasing rapidly. A simple spatial interruption in the 3D structure such as intercalation by a layer of molecules, or ions or even a mixture of molecules and ions can dramatically affect the intrinsic properties of the pristine perovskites4. Here, a comparison of selected cases is proposed relying both on theoretical studies (quantum confinement effect, mixing of electronic states ...) and experimental measurements (crystallography, spectroscopy, enthalpies of formation). The dielectric profiles along the stacking axis for different cases are also compared5,6. Finally, the limit to the thermodynamic stability7 is explored as a function of the number of layers in a single phase layered perovskites. This project has received funding from the European Union’s Horizon 2020 research and innovation Programme under the grant agreement No 862656. (1) Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M. Conducting Tin Halides with a Layered Organic-Based Perovskite Structure. Nature 1994, 369 (6480), 467–469. https://doi.org/10.1038/369467a0. (2) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643– 647. https://doi.org/10.1126/science.1228604. (3) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry- Baker, R.; Yum, J.-H.; Moser, J. E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012, 2. https://doi.org/10.1038/srep00591. (4) Smith, M. D.; Pedesseau, L.; Kepenekian, M.; Smith, I. C.; Katan, C.; Even, J.; Karunadasa, H. I. Decreasing the Electronic Confinement in Layered Perovskites through Intercalation. Chem. Sci. 2017, 8 (3), 1960–1968. https://doi.org/10.1039/C6SC02848A. (5) Traore, B.; Pedesseau, L.; Assam, L.; Che, X.; Blancon, J.-C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Kanatzidis, M. G.; Tretiak, S.; et al. Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment. ACS Nano 2018, 12 (4), 3321–3332. https://doi.org/10.1021/acsnano.7b08202. (6) Sapori, D.; Kepenekian, M.; Pedesseau, L.; Katan, C.; Even, J. Quantum Confinement and Dielectric Profiles of Colloidal Nanoplatelets of Halide Inorganic and Hybrid Organic–Inorganic Perovskites. Nanoscale 2016, 8 (12), 6369–6378. https://doi.org/10.1039/C5NR07175E. (7) Soe, C. M. M.; Nagabhushana, G. P.; Shivaramaiah, R.; Tsai, H.; Nie, W.; Blancon, J.-C.; Melkonyan, F.; Cao, D. H.; Traoré, B.; Pedesseau, L.; et al. Structural and Thermodynamic Limits of Layer Thickness in 2D Halide Perovskites. PNAS 2019, 116 (1), 58–66. https://doi.org/10.1073/pnas.1811006115.