An intrusion detection system for packet and flow based networks using deep neural network approach
Main Authors: | Kaniz Farhana, Maqsudur Rahman, Md. Tofael Ahmed |
---|---|
Format: | Article |
Terbitan: |
, 2020
|
Subjects: | |
Online Access: |
https://zenodo.org/record/4136972 |
Daftar Isi:
- Study on deep neural networks and big data is merging now by several aspects to enhance the capabilities of intrusion detection system (IDS). Many IDS models has been introduced to provide security over big data. This study focuses on the intrusion detection in computer networks using big datasets. The advent of big data has agitated the comprehensive assistance in cyber security by forwarding a brunch of affluent algorithms to classify and analysis patterns and making a better prediction more efficiently. In this study, to detect intrusion a detection model has been propounded applying deep neural networks. We applied the suggested model on the latest dataset available at online, formatted with packet based, flow based data and some additional metadata. The dataset is labeled and imbalanced with 79 attributes and some classes having much less training samples compared to other classes. The proposed model is build using Keras and Google Tensorflow deep learning environment. Experimental result shows that intrusions are detected with the accuracy over 99% for both binary and multiclass classification with selected best features. Receiver operating characteristics (ROC) and precision-recall curve average score is also 1. The outcome implies that Deep Neural Networks offers a novel research model with great accuracy for intrusion detection model, better than some models presented in the literature.